EN

研究業績

2024年

  1. Unimolecular Fragment Coupling: A New Bond-Forming Methodology via the Deletion of Atom(s)
    Shimazumi, R.; Tobisu, M.
    JACS Au, 2024, ##, #####.
    DOI:https://pubs.acs.org/doi/10.1021/jacsau.3c00827
  2. Highly Active and Sulfur-tolerant Ruthenium Phosphide Catalyst for Efficient Reductive Amination of Carbonyl Compounds (cover picture)
    Ishikawa, H.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    ACS Catal., 2024, 14, 4501–4509.
    DOI:https://doi.org/10.1021/acscatal.3c06179
  3. Air-stable and Highly Active Transition Metal Phosphide Catalysts for Reductive Molecular transformations
    Catalysts
    Mitsudome, T.
    Catalysts, 2024, 14, 193.
    DOI:https://doi.org/10.3390/catal14030193
  4. Single-Carbon Atom Doping Reactions Using Atomic Carbon and Its Equivalents
    Fujimoto, H.; Tobisu, M.
    ChemistryEurope, 2024, ##, e202400005.
    DOI:http://doi.org/10.1002/ceur.202400005
  5. Palladium-Catalyzed Addition of Trifluoroacetylsilanes to Alkenes and Allenes via the Cleavage of C–Si Bonds
    Inagaki, T.; Akita, Y.; Tobisu, M.
    Org. Lett. , 2024, 26, 2141–2145.
    DOI:https://doi.org/10.1021/acs.orglett.4c00595
  6. Catalytic synthesis of β-lactam derivatives by carbonylative cycloaddition of acylsilanes with imines via a palladium Fischer-carbene intermediate
    Inagaki, T.; Kodama, T., Tobisu, M.
    Nature Catal., 2024, 7, 132–138.
    DOI:https://www.nature.com/articles/s41929-023-01081-5
  7. Nickel Carbide Nanoparticle Catalyst for Selective Hydrogenation of Nitriles to Primary Amines
    Yamaguchi, S.; Kiyohira, D.; Tada, K.; Kawakami, T.; Miura, A.; Mitsudome, T.; Mizugaki, T.
    Chem. Eur. J, 2024, 30, e202303573.
    DOI:https://doi.org/10.1002/chem.202303573
  8. Reductive Amination of Carboxylic Acids under H2 using a Heterogeneous Pt–Mo Catalyst
    Sakoda, K.; Yamaguchi, S.; Honjo, K.; Kitagawa, Y.; Mitsudome, T.; Mizugaki, T.
    Green Chem., 2024, 26, 2571–2576. (cover picture)
    DOI:https://doi.org/10.1039/D3GC02155F

2023年

  1. Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst(special issue for Japan/Netherlands Gratama Workshop)
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Synlett, 2023, ##, ####–####.
    DOI:https://10.1055/a-2191-5906
  2. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation
    Tsuda, T.; Sheng, M.; Ishikawa, H.; Yamazoe, S.; Yamazaki, J.; Hirayama, M.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    Nat Commun., 2023, 14, 5959.
    DOI:https://www.nature.com/articles/s41467-023-41627-6
  3. Robust Ruthenium Phosphide Catalyst for Hydrogenation of Sulfur-Containing Nitroarenes(front cover)
    Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    ACS Catal., 2023, 13, 5744–5751.
    DOI:https://doi.org/10.1021/acscatal.3c00128 Highlighted in Synfacts, 2023, 19, 0705.
  4. Copper nitride nanocube catalyst for the highly efficient hydroboration of alkynes(front cover)
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Org. Biomol. Chem., 2023, 21, 1404–1410.
    DOI:https://doi.org/10.1039/D2OB02130G
  5. Green Oxidation of Indoles Using Molecular Oxygen over a Copper Nitride Nanocube Catalyst.
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Eur. J. Org. Chem., 2022, 2022, e20220826.
    DOI:https://doi.org/10.1002/ejoc.202200826
  6. Synthesis and structural evaluation of closed-shell folded and open-shell twisted hexabenzo[5.6.7]quinarene
    Nishiuchi, T.; Uchida, K.; Kubo, T.
    Chem. Commun., 2023, 59, 7379–7382.
    DOI:https://pubs.rsc.org/en/content/articlelanding/2023/cc/d3cc02157b
  7. Single–carbon atom transfer to α,β-unsaturated amides from N-heterocyclic carbenes
    Kamitani, M.; Nakayasu, B.; Yasui, K.; Fujimoto, H.; Kodama, T.; Tobisu, M.
    Science, 2023, 379, 484–488.
    DOI:https://www.science.org/doi/10.1126/science.ade5110
  8. 1,2-Diacylation of Alkynes Using Acyl Fluorides and Acylsilanes by P(III)/P(V) Catalysis
    Fujimoto, H.; Yamamura, S.; Kusano, M.; Tobisu, M.
    Org. Lett., 2023, 25, ####–####.
    DOI:https://doi.org/10.1021/acs.orglett.2c03910
  9. Selective and High-Rate CO2 Electroreduction by Metal-Doped Covalent Triazine Frameworks: A Computational and Experimental Hybrid Approach
    Kato, S.; Hashimoto, T.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K.
    Chem. Sci., 2023, ##, ####–####.
    DOI:https://doi.org/10.1039/D2SC03754H
  10. Ultra-high-rate CO2 reduction reactions to multicarbon products with a current density of 1.7 A cm-2 in neutral electrolytes
    Inoue, A.; Harada, T.; Nakanishi, S.; Kamiya, K.
    EES. Catal., 2023, ##, ####–####.
    DOI:https://doi.org/10.1039/D2EY00035K
  11. Stacked antiaromaticity in the π-congested space between the aromatic rings in the anthracene dimer
    Nishiuchi, T.; Makihara, Y.; Kishi, R.; Sato, H.; Kubo, T.
    J. Phys. Org. Chem., 2023, 36, e4451.
    DOI:https://doi.org/10.1002/poc.4451

2022年

  1. Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene-within-an-Annulene Models
    Miyoshi, H.; Sugiura, R.; Kishi, R.; Spisak, S. N.; Wei, Z.; Muranaka, A.; Uchiyama, M.; Kobayashi, N.; Chatterjee, S.; Ie, Y.; Hisaki, I.; Petrukhina, M. A.; Nishinaga, T.; Nakano, M.; Tobe, Y.
    Angew. Chem. Int. Ed., 2022, 61, e202115316.
    DOI:https://doi.org/10.1002/anie.202115316
  2. Medium Diradical Character, Small Hole and Electron Reorganization Energies and Ambipolar Transistors in Difluorenoheteroles
    Mori, S.; Moles Quintero, S.; Tabaka, N.; Kishi, R.; González Núñez, R.; Harbuzaru, A.; Ponce Ortiz, R.; Marín‐Beloqui, J.; Suzuki, S.; Kitamura, C.; Gómez‐García, C. J.; Dai, Y.; Negri, F.; Nakano, M.; Kato, S.; Casado, J.
    Angew. Chem. Int. Ed., 2022, 61, e202206680.
    DOI:https://doi.org/10.1002/anie.202206680
  3. Characterization of resonance structures in aromatic rings of benzene and its heavier-element analogues
    Sugahara, T.; Hashizume, D.; Tokitoh, N.; Matsui, H.; Kishi, R.; Nakano, M.; Sasamori, T.
    Phys. Chem. Chem. Phys., 2022, 24, 22557–22561.
    DOI:https://doi.org/10.1039/D2CP03068C
  4. Theoretical study on the structures, electronic properties, and aromaticity of thia[4]circulenes
    Hashimoto, S.; Kishi, R.; Tahara, K.
    New J. Chem., 2022, 46, 22703–22714.
    DOI:https://doi.org/10.1039/d2nj04359a
  5. Synthesis of Cage-Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation
    Tsutsui, Y.; Tanaka, D.; Manabe, Y.; Ikinaga, Y.; Yano, K.; Fukase, K.; Konishi, A.; Yasuda, M.
    New J. Chem., 2022, 46, e202202284.
    DOI:https://doi.org/10.1039/D2NJ04359A
  6. Lewis Acid-Catalyzed Diastereoselective C–C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,β-Diaryl-β-haloesters
    Wang, F.; Nishimoto, Y.; Yasuda, M.
    Angew. Chem. Int. Ed., 2022, 61, e202204462.
    DOI:https://doi.org/10.1002/anie.202204462
  7. anti-Selective Borylstannylation of Alkynes with (o-Phenylenediaminato)borylstannanes by a Radical Mechanism
    Suzuki, K.; Sugihara, N.; Nishimoto, Y.; Yasuda, M.
    Angew. Chem. Int. Ed., 2022, 61, e202201883.
    DOI:https://doi.org/10.1002/anie.202201883
  8. Indium-Catalyzed Formal Carbon−Halogen Bond Insertion: Synthesis of α‐Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters
    Wang, F.; Nishimoto, Y.; Yasuda, M.
    Org. Lett., 2022, 24, 1706–1710.
    DOI:https://doi.org/10.1021/acs.orglett.2c00343
  9. Bis-periazulene (Cyclohepta[def]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives
    Horii, K.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Konishi, A.; Yasuda, M.
    J. Am. Chem. Soc., 2022, 144, 3370–3375.
    DOI:https://doi.org/10.1021/jacs.2c00476
  10. Carboboration-Driven Generation of a Silylium Ion for Vinylic C–F Bond Functionalization by B(C6F5)3 Catalysis
    Yata, T.; Nishimoto, Y.; Yasuda, M.
    Chem. Eur. J., 2022, 28, e202103852.
    DOI:https://doi.org/10.1002/chem.202103852
  11. Revisiting Glycosylations Using Glycosyl Fluoride by BF3∙Et2O: Activation of Disarmed Glycosyl Fluorides with High Catalytic Turnover
    Yata, T.; Nishimoto, Y.; Yasuda, M.
    Org. Lett., 2022, 24, 6–10.
    DOI:https://doi.org/10.1021/acs.orglett.1c03233
  12. Synthesis and Characterization of Dinaphtho[2,1-a:2,3-f]pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer
    Horii, K.; Nogata, A.; Mizuno, Y.; Iwasa, H.; Suzuki, M.; Nakayama, K.; Konishi, A.; Yasuda, M.
    Chem. Lett., 2022, 51, 325–329.
    DOI:https://doi.org/10.1246/cl.210809
  13. Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics
    Jinnai, S.; Murayama, K.; Nagai, K.; Mineshita, M.; Kato, K.; Muraoka, A.; Yamakata, A.; Saeki, A.; Kobori, Y.; Ie, Y.
    J. Mater. Chem. A, 2022, 10, 20035–20047.
    DOI:https://doi.org/10.1039/D2TA02604J
  14. A Tin Oxide-Coated Copper Foam Hybridized with a Gas Diffusion Electrode for Efficient CO2 Reduction to Formate with a Current Density Exceeding 1 A cm−2
    Liu, T.; Ohashi, K.; Nagita, K.; Harada, T.; Nakanishi, S.; Kamiya, K.
    Small, 2022, 18, 2205323.
    DOI:https://doi.org/10.1002/smll.202205323
  15. Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation
    Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S.
    Nat. Commun., 2022, 13, 3067.
    DOI:https://doi.org/10.1038/s41467-022-30764-z
  16. N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li–O2 Batteries
    Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S.
    ACS Appl. Energy Mater., 2022, 5, 4404–4412.
    DOI:https://doi.org/10.1021/acsaem.1c03999
  17. NADPH production in dark stages is critical for cyanobacterial photocurrent generation: A study using mutants deficient in oxidative pentose phosphate pathway
    Hatano, J.; Kusama, S.; Tanaka, K.; Kohara, A.; Miyake, C.; Nakanishi, S.; Shimakawa, G.
    Photosynth. Res., 2022, 153, 113–120.
    DOI:https://doi.org/10.1007/s11120-022-00903-0
  18. Positive Feedback Mechanism to Increase the Charging Voltage of Li‒O2 Batteries
    Hase, Y.; Uyama, T.; Nishioka, K.; Seki, J.; Morimoto, K.; Ogihara, N.; Mukouyama, Y.; Nakanishi, S.
    J. Am. Chem. Soc., 2022, 144, 1296–1305.
    DOI:https://doi.org/10.1021/jacs.1c10986
  19. Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration
    Shintani, R.; Hama, D.; Hamada, N.; Miwa, T.
    Tetrahedron Lett., 2022, 104, 154301.
    DOI:https://doi.org/10.1016/j.tetlet.2022.154031
  20. Synthesis of Poly(arylenevinylene)s by Rhodium-Catalyzed Stitching Polymerization/Alkene Isomerization
    Togawa, S.; Shintani, R.
    J. Am. Chem. Soc., 2022, 144, 18545–.
    DOI:https://doi.org/10.1021/jacs.2c07835
  21. Tunable Solid-State Thermochromism: Alkyl Chain Length-Dependent Conformational Isomerization of Bianthrones
    Hirao, Y.; Hamamoto, Y.; Kubo, T.
    Chem. Asian J., 2022, 17, e202200121.
    DOI:https://doi.org/10.1039/D1OB02358F
  22. A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
    Hirao, Y.; Eto, M.; Teraoka, M.; Kubo, T.
    Org. Biomol. Chem., 2022, 20, 1671–1679.
    DOI:https://doi.org/10.1039/D2SC06003E
  23. anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters
    Nishino, S.; Nishii, Y.; Hirano, K.
    Chem. Sci., 2022, 13, 14387–14394.
    DOI:https://doi.org/10.1039/D2SC06003E
  24. Palladium-catalysed C-H arylation of benzophospholes with aryl halides
    Xu, S.; Nishimura, K.; Saito, K.; Hirano, K.; Miura, M.;
    Chem. Sci., 2022, 13, 10950–10960.
    DOI:https://doi.org/10.1039/D2SC04311D
  25. Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes
    Kojima, Y.; Nishii, Y.; Hirano, K.
    Org. Lett., 2022, 24, 7450–7454.
    DOI:https://doi.org/10.1021/acs.orglett.2c03024
  26. Pd-catalyzed, Ag-assisted C2-H alkenylation of benzophospholes
    Tokura, Y.; Xu, S.; Kojima, Y.; Miura, M.; Hirano, K.
    Chem. Commun., 2022, 58, 12208–12212.
    DOI:https://doi.org/10.1039/D2CC04942B
  27. Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
    Nishino, S.; Hirano, K.
    Asian J. Org. Chem., 2022, ##, ####–####.
    DOI:https://doi.org/10.1002/ajoc.202200636
  28. Nickel-Catalyzed Cross Coupling via C–O and C–N Activation
    Yoshida, T.; Tobisu
    Science of Synthesis: Base-Metal Catalysis, 2022, 1, 591–630.
    DOI:https://www.thieme-connect.com/products/ebooks/lookinside/10.1055/sos-SD-238-00298
  29. Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzene
    Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Bull. Chem. Soc. Jpn., 2022, 95, 1591–1599.
    DOI:https://doi.org/10.1246/bcsj.20220257
  30. Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
    Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P.
    J. Phys. Chem. A, 2022, 126, 5283–5293.
    DOI:https://doi.org/10.1021/acs.jpca.2c02906
  31. Synthesis of Sumanene-fused Acenes
    Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H.
    Asian J. Org. Chem., 2022, ##, ####–####.
    DOI:https://doi.org/10.1002/ajoc.202200471
  32. Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
    Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Bull. Chem. Soc. Jpn. 2022, ##, ####–####.
    DOI:https://www.journal.csj.jp/doi/abs/10.1246/bcsj.20220257
  33. Synthetic Applications of C–O and C–E Bond Activation Reactions
    Tobisu, M.; Kodama, T.; Fujimoto, H.
    Comprehensive Organometallic Chemistry IV, 2022, 12, pp347–420.
    DOI:https://www.sciencedirect.com/science/article/pii/B9780128202067000895
  34. Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
    Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H.
    J. Org. Chem., 2022, 87, 2508–2519.
    DOI:https://doi.org/10.1021/acs.joc.1c02416
  35. Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
    Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T.
    RADIOISOTOPES, 2022, 71, 171–177.
    DOI:https://doi.org/10.3769/radioisotopes.71.171
  36. Turning the Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
    Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H.
    Chem. Commun., 2022, 58, 8950–8953.
    DOI:https://doi.org/10.1039/D2CC02766F
  37. Nickel-catalyzed 1,4-aryl rearrangement of aryl N-benzylimidates via C–O and C–H bond cleavage (cover picture)
    Ogawa, S.; Tobisu, M.
    Chem. Commun., 2022, 58, 7909–7912.
    DOI:https://doi.org/10.1039/D2CC02355E
  38. Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate
    Shimazumi, R.; Tanimoto, R.; Kodama, T.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 11033–11043.
    DOI:https://doi.org/10.1021/jacs.2c04527
  39. Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
    Yamauchi, Y.: Hoshimoto, Y.: Kawakita, T.: Kinoshita, T.: Uetake, Y.: Sakurai, H.: Ogoshi, S.
    J. Am. Chem. Soc., 2022, 144, 8818–8826.
    DOI:https://doi.org/10.1021/jacs.2c02870
  40. Tuning the sumanene receptor structure towards the development of potentiometric sensors
    Kasprzak, A.: Tobolska, A.: Sakurai, H.: Wróblewski, W.
    Dalton Trans., 2022, 51, 468–472.
    DOI:https://doi.org/10.1021/acs.joc.1c02416
  41. Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
    Li, M.; JianYun Wu,J,Y.; Sambe, K.; Yakiyama, Y. ; Akutagawa, T.; Kajitani, T.; Fukushima, T. ; Matsudah K.; Sakurai, H.
    Mater. Chem. Front., 2022, 6, 1752–1758.
    DOI:https://doi.org/10.1039/D2QM00134A
  42. Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
    Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T.
    J. Am. Chem. Soc., 2022, 144, 7479–7488.
    DOI:https://doi.org/10.1021/jacs.2c02318
  43. Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use in Catalytic Nucleophilic Aromatic Substitution
    Ito, S.; Fujimoto, H.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 6714–6718.
    DOI:https://doi.org/10.1021/jacs.2c02579
  44. Nickel-Catalyzed Skeletal Transformation of Tropone Derivatives via C–C Bond Activation: Catalyst-Controlled Access to Diverse Ring Systems
    Kodama, T.; Saito, K.; Tobisu, M.
    Chem. Sci., 2022, 13, 4922–2929.
    DOI:https://doi.org/10.1039/D2SC01394K
  45. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
    Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202200286.
    DOI:https://doi.org/10.1002/chem.202200286
  46. Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
    Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A.
    Sens. Bio-Sens. Res., 2022, 35, 100470.
    DOI:https://doi.org/10.1016/j.sbsr.2021.100470
  47. Palladium-Catalyzed Silylacylation of Allenes Using Acylsilanes
    Inagaki, T.; Sakurai, S.; Yamanaka, M. Tobisu, M.
    Angew. Chem. Ind. Ed., 2022, 61, e202202387.
    DOI:https://doi.org/10.1002/anie.202202387
  48. Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst(front cover)
    Sakoda, K.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    JACS Au, 2022, 2, 665–672.
    DOI:https://doi.org/10.1021/jacsau.1c00535
  49. Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus(front cover)
    Ishikawa, H.; Yamaguchi, S.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    JACS Au, 2022, 2, 419–427.
    DOI:https://doi.org/10.1021/jacsau.1c00461
  50. Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
    Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M.; Ajavakom, A.
    Sens. Bio-Sens. Res., 2022, 35, 100470.
    DOI:https://doi.org/10.1016/j.sbsr.2021.100470
  51. Overlooked Factors Required for Electrolyte Solvents in Li–O₂ Batteries: Capabilities of Quenching 1O₂ and Forming Highly-Decomposable Li₂O₂
    Nishioka, K.; Tanaka, M.; Fujimoto, H.; Amaya, T.; Ogoshi, S.; Tobisu, M.; Nakanishi, S.
    Angew. Chem. Ind. Ed., 2022, 61, e202112769.
    DOI:https://doi.org/10.1002/anie.202112769
  52. Molecular and Spin Structures of a Through-Space Conjugated Triradical System
    Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T.
    Angew. Chem. Ind. Ed., 2022, 61, e202200688.
    DOI:https://doi.org/10.1002/anie.202200688
  53. Synthesis, Properties and Chemical Modification of a Persistent Triisopropylsilylethynyl Substituted Tri(9-anthryl)methyl Radical
    Nishiuchi, T.; Ishii, D; Aibara, S.; Sato, H.; Kubo, T.
    Chem. Commun., 2022, 58, 3306–3309.
    DOI:https://doi.org/10.1039/D2CC00548D
  54. A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
    Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T.
    Org. Biomol. Chem., 2022, 20, 1671–1679.
    DOI:https://doi.org/10.1039/D1OB02358F
  55. Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes
    Sakurai, S.; Inagaki, T.; Kodama, T.; Yamanaka, M. Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 1099–1105.
    DOI:https://pubs.acs.org/doi/10.1021/jacs.1c11497
  56. Nickel-Catalyzed Addition of C–C Bonds of Amides to Strained Alkenes: The 1,2-Carboaminocarbonylation Reaction
    Ito, Y.; Nakatani, S.; Shiraki, R.; Kodama, T.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 662–666.
    DOI:https://pubs.acs.org/doi/10.1021/jacs.1c09265
  57. Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy
    Li, X.; Shigemitsu, H.; Goto, T.; Kida, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y.
    Nanoscale Adv., 2022, 4, 2992–2995.
    DOI:https://doi.org/10.1039/D2NA00318J
  58. Enhanced Photocatalytic Activity of Porphyrin Nanodisks Prepared by Exfoliation of Metalloporphyrin-Based Covalent Organic Frameworks
    Li, X.; Nomura, K.; Guedes, A.; Goto, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y.
    ACS Omega, 2022, 7, 7172–7278.
    DOI:https://doi.org/10.1021/acsomega.1c06838
  59. Single-molecule Fluorescence Kinetic Sandwich Assay Using a DNA Sequencer
    Kawai, K.; Fujitsuka, M.
    Chem. Lett., 2022, 51, 139–141.
    DOI:https://doi.org/10.1246/cl.210726
  60. Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking
    Fan, S.; Xu, J.; Osakada, Y.; Hashimoto, K.; Takayama, K.; Natsume, A.; Hirano, M.; Maruyama, A.; Fujitsuka, M.; Kawai, K.; Kawai, K.
    Chem, 2022, 8, 3109–3119.
    DOI:https://doi.org/10.1016/j.chempr.2022.07.025
  61. Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA
    Fan, S.; Takada, T.; Maruyama, A.; Fujitsuka, M.; Kawai, K.
    Bull. Chem. Soc. Jpn., 2022, 95, 1697–1702.
    DOI:https://doi.org/10.1246/bcsj.20220220
  62. Amphiphilic Rhodamine Nano-assembly as a Type I Supramolecular Photosensitizer for Photodynamic Therapy
    Shigemitsu, H.; Sato, K.; Hagio, S.; Tani, Y.; Mori, T.; Ohkubo, K.; Osakada, Y.; Fujitsuka, M.; Kida, T.
    ACS Appl. Nano Mater., 2022, 5, 14954–14960.
    DOI:https://doi.org/10.1021/acsanm.2c03192
  63. Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly
    Shigemitsu, H.; Ohkubo, K.; Sato, K.; Bunno, A.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T.
    JACS Au, 2022, 2, 1472–1478.
    DOI:https://doi.org/10.1021/jacsau.2c00243

2021年

  1. Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting
    Cai, X.; Mao, L.; Fujitsuka, M.; Majima, T.; Kasani, S.; Wu, N.; Zhang, J.
    Nano Res., 2021, 15, 438–445.
    DOI:https://doi.org/10.1007/s12274-021-3498-5
  2. Defect-mediated electron transfer in photocatalysts
    Xue, J.; Fujitsuka, M.; Majima, T.
    Chem. Commun., 2021, 57, 3532–2542.
    DOI:https://doi.org/10.1039/D1CC00204J
  3. Control of Triplet Blinking Using Cyclooctatetraene to Access the Dynamics of Biomolecules at the Single-Molecule Level
    Xu, J.; Fan, S.; Xu, L.; Maruyama, A.; Fujitsuka, M.; Kawai, K.
    Angew. Chem. Int. Ed., 2021, 60, 12941–12948.
    DOI:https://doi.org/10.1002/anie.202101606
  4. Electronic and Structural Properties of 2,3-Naphthalimide in Open-Shell Configurations Investigated by Pulse Radiolytic and Theoretical Approaches
    Zhuang, B.; Tojo, S.; Fujitsuka, M.
    ChemistrySelect, 2021, 6, 3331–3338.
    DOI:https://doi.org/10.1002/slct.202100417
  5. One-Pot Synthesis of Long Rutile TiO2 Nanorods and Their Photocatalytic Activity for O2 Evolution: Comparison with Near-Spherical Nanoparticles
    Yamazaki, S.; Kutoh, M.; Yamazaki, Y.; Yamamoto, N.; Fujitsuka, M.
    ACS Omega, 2021, 6, 31557–31565.
    DOI:https://doi.org/10.1021/acsomega.1c04003
  6. Stacked Thiazole Orange Dyes in DNA Capable of Switching Emissive Behavior in Response to Structural Transitions
    Takada, T.; Nishida, K.; Honda, Y.; Nakano, A.; Nakamura, M.; Fan, S.; Kawai, K.; Fujitsuka, M.; Yamana, K.
    ChemBioChem, 2021, 22, 2729–2735.
    DOI:https://doi.org/10.1002/cbic.202100309
  7. A cyanine dye based supramolecular photosensitizer enabling visible-light-driven organic reaction in water
    Shigemitsu, H.; Tamemoto, T.; Ohkubo, K.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T.
    Chem. Commun., 2021, 57, 11217–11220.
    DOI:https://doi.org/10.1039/D1CC04685C
  8. Femtosecond time-resolved diffuse reflectance study on facet engineered charge‐carrier dynamics in Ag3PO4 for antibiotics photodegradation
    He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T.
    Appl. Catal., B, 2021, 281, 119479.
    DOI:https://doi.org/10.1016/j.apcatb.2020.119479
  9. COF-based photocatalyst for energy and environment applications
    Li, X.; Kawai, K.; Fujitsuka, M.; Osakada, Y.
    Surf. Interfaces, 2021, 25, 101249.
    DOI:https://doi.org/10.1016/j.surfin.2021.101249
  10. Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking
    Kawai, K.; Fujitsuka, M.; Maruyama, A.
    Acc. Chem. Res., 2021, 54, 1001–1010.
    DOI:https://doi.org/10.1021/acs.accounts.0c007549
  11. Theoretical Study on Singlet Fission in Aromatic Diaza s-Indacene Dimers
    Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M.
    J. Phys. Chem. A, 2021, 125, 3257–3267.
    DOI:https://doi.org/10.1021/acs.jpca.0c11598
  12. Characterization of Benzo[a]naphtho[2,3-f]pentalene: Interrelation between Open-shell and Antiaromatic Characters Governed by Mode of the Quinoidal Subunit and Molecular Symmetry
    Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M.
    Chem. Asian. J., 2021, 16, 1553–1561.
    DOI:https://doi.org/10.1002/asia.202100398
  13. Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models
    Tonami, T.; Sugimori, R.; Sakai, R.; Tokuyama, K.; Miyamoto, H.; Nakano, M.
    Phys. Chem. Chem. Phys., 2021, 23, 11624–11634.
    DOI:https://doi.org/10.1039/D1CP00880C
  14. Theoretical Study on Singlet Fission Dynamics in Slip-Stack-Like Pentacene Ring-Shaped Aggregate Models
    Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M.
    J. Phys. Chem. A, 2021, 125, 5586–5600.
    DOI:https://doi.org/10.1021/acs.jpca.1c03934
  15. Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
    Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M.
    Molecules, 2021, 26, 6129.
    DOI:https://doi.org/10.3390/molecules26206129
  16. Long Carbon–Carbon Bonding beyond 2 Å in Tris(9-fluorenylidene)methane
    Kubo, T.; Suga, Y.; Hashizume, D.; Suzuki, H.; Miyamoto, T.; Okamoto, H.; Kishi, R.; Nakano, M.
    J. Am. Chem. Soc., 2021, 143, 14360–14366.
    DOI:https://doi.org/10.1021/jacs.1c07431
  17. A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ring-Opening of Benzofuran-fused s-Indacenes and Dicyclopenta[b,g]naphthalenes
    Barker, J. E.; Price, T. W.; Karas, L. J.; Kishi, R.; MacMillan, S. N.; Zakharov, L. N.; Gómez‐García, C. J.; Wu, J. I.; Nakano, M.; Haley, M. M.
    Angew. Chem. Int. Ed., 2021, 60, 22385–22392.
    DOI:https://doi.org/10.1002/anie.202107855
  18. Insertion of Diazo Esters into C−F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF3 Catalysis with C−F Bond Cleavage and Re-formation (cover picture)
    Wang, F.; Nishimoto, Y.; Yasuda, M.
    J. Am. Chem. Soc., 2021, 143, 20616–20621.
    DOI:https://doi.org/10.1021/jacs.1c10517
  19. Biradicaloid Behavior of a Twisted Double Bond
    Hamamoto, Y.; Hirao, Y.; Kubo, T.
    J. Phys. Chem. Lett., 2021, 12, 4729–4734.
    DOI:https://doi.org/10.1021/acs.jpclett.1c00664
  20. Strong Metal–Support Interaction in Pd/Ca2AlMnO5+δ: Catalytic NO Reduction over Mn-Doped CaO Shell
    Hosokawa, S.; Oshino, Y.; Tanabe, T.; Koga, H.; Beppu, K.; Asakura, H.; Teramura, K.; Motohashi, T.; Okumura, M.; Tanaka, T.
    ACS Catal., 2021, 11, 7996–8003.
    DOI:https://doi.org/10.1021/acscatal.1c01559
  21. Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
    Era, I.; Kitagawa, Y.; Yasuda, N.; Kamimura, T.; Amamizu, N.; Sato, H.; Cho, K.; Okumura, M.; Nakano, M.
    Molecules, 2021, 26, 6129.
    DOI:https://doi.org/10.3390/molecules26206129
  22. Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction (Cover)
    Niwa, T.; Uetake, Y.; Isoda, M.; Takimoto, T.; Nakaoka, M.; Hashizume, D.; Sakurai, H.; Hosoya, T.
    Nature. Catal., 2021, 4, 6593–6597.
    DOI:https://doi.org/10.1038/s41929-021-00719-6
  23. 1,2,3-Tri(9-anthryl)benzene: Photophysical Properties and Solid State Intermolecular Interactions of Radially Arranged, Congested Aromatic π-Planes (cover picture)
    Nishiuchi, T.; Sotome, H.; Shimizu, K.; Miyasaka, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202104245.
    DOI:https://doi.org/10.1002/chem.202104245
  24. Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium.
    Kasama, K.; Kanomata, K.; Hinami, Y.; Mizuno, K.; Uetake, Y.; Amaya, T.; Sako, M.; Takizawa, S.; Sasai, H.; Akai, S.
    RSC Adv., 2021, 11, 35342–35350.
    DOI:https://doi.org/10.1039/D1RA07723F
  25. Synthesis of Benzoisoselenazolones via Rh(III)-catalyzed Direct Annulative Selenation Using Elemental Selenium.
    Xu-Xu, Q.-F.; Nishii, Y.; Uetake, Y.; Sakurai, H.; Miura, M.
    Chem. Eur. J., 2021, 27, 17952–17959.
    DOI:https://doi.org/10.1002/chem.202103485
  26. Pyridine Ring Modification of Indane-1,3-dione Dimers for Control of their Crystal Structure.
    Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H.
    Asian J. Org. Chem., 2021, 10, 2418.
    DOI:https://doi.org/10.1002/ajoc.202100376
  27. Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence.
    Nishiuchi, T.; Sotome, H.; Fukuuchi, R.; Kamada, K.; Miyasaka, H.; Kubo, T.
    Aggregate, 2021, 2, e126.
    DOI:https://doi.org/10.1002/agt2.126
  28. Synthesis and Characterization of 1-Hydroxy-4,5-arene-Fused Tropylium Derivatives
    Kodama, T.; Kawashima, Y.; Uchida, K.; Deng, Z.; Tobisu, M.
    J. Org. Chem., 2021, 86, 13800–13807.
    DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
  29. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds
    Sheng, M.; Fujita, S.; Yamaguchi, S.; Yamasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    JACS Au, 2021, 1, 501–507.
    DOI:https://doi.org/10.1021/jacsau.1c00125
  30. A Nickel Phosphide Nanoalloy Catalyst for the C-3 Alkylation of Oxindoles with Alcohols
    Sheng, M.; Fujita, S,; Imagawa, K.; Yamaguchi, S.; Yamasaki, J.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    Sci. Rep., 2021, 11, 10673.
    DOI:https://doi.org/10.1038/s41598-021-89561-18
  31. A Copper Nitride Catalyst for the Efficient Hydroxylation of Aryl Halides under Ligand-free Conditions (Cover)
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Org. Biomol. Chem., 2021, 19, 6593–6597.
    DOI:https://doi.org/10.1039/D1OB00768H
  32. Efficient D-Xylose Hydrogenation to D-Xylitol over a Hydrotalcite-Supported Nickel Phosphide Nanoparticle Catalyst (Cover)
    Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    Eur. J. Inorg. Chem., 2021, 2021, 3327–3331.
    DOI:https://doi.org/10.1002/ejic.202100432
  33. Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines (Cover)
    Sheng, M.; Yamaguchi, S.; Nakata, A.; Yamazoe, S.; Nakajima, K.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    ACS Sustainable Chemistry & Engineering, 2021, 9, 11238–11246.
    DOI:https://doi.org/10.1021/acssuschemeng.1c03667
  34. Synthesis and Catalytic Activity of Atrane-type Hard and Soft Lewis Superacids with a Silyl, Germyl, or Stannyl Cationic Center
    Tanaka, D.; Konishi, A.; Yasuda, M.
    Chem. Asian J., 2021, 16, 3118–3123.
    DOI:https://doi.org/10.1002/asia.202100873
  35. Synthesis and pyrolysis of fullerenol-stabilized Pt nanocolloids for unique approach to Pt-doped carbon
    Cabello, M. K. E.; Uetake, Y.; Yao, Y.; Kuwabata, S.; Sakurai, H.
    Chem. Asian J., 2021, 16, 2280–2285.
    DOI:https://doi.org/10.1002/asia.202100495
  36. Ruthenium-Catalyzed Isomerization of ortho-Silylanilines to Their Para Isomers
    Ishiga, W.; Ohta, M.; Kodama, T.; Tobisu, M.
    Org. Lett., 2021, 23, 6714–6718.
    DOI:https://doi.org/10.1021/acs.orglett.1c022800
  37. Nonfullerene acceptors for P3HT-based organic solar cells
    Chatterjee, S.; Jinnai, S.; Ie, Y.
    J. Mater. Chem. A, 2021, 9, 18857–18886.
    DOI:https://doi.org/10.1039/D1TA03219D
  38. Photoredox-Catalyzed C−F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position
    Sugihara, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M.
    J. Am. Chem. Soc., 2021, 143, 9308–9313.
    DOI:https://doi.org/10.1021/jacs.1c03760
  39. Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
    Kranthiraja, K,; Saeki, A.
    Adv. Funct. Mater., 2021, 31, 92011168.
    DOI:https://doi.org/10.1002/adfm.202011168
  40. Indium-catalyzed C–F Bond Transformation through Oxymetalation/β-fluorine Elimination to Access Fluorinated Isocoumarin
    Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M.
    Chem. Eur. J., 2021, 27, 8288–8294.
    DOI:https://doi.org/10.1002/chem.202100672
  41. Homologation of Alkyl Acetates, Alkyl Ethers, Acetals and Ketals by Formal Insertion of Diazo Compounds into a Carbon-Carbon Bond
    Wang, F.; Yi, J.; Nishimoto, Y.; Yasuda, M.
    Synthesis, 2021, 53, 4004–4019.
    DOI:https://doi.org/10.1055/a-1523-1551
  42. Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution
    Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S.
    Inorg. Chem., 2021, 60, 12634–12643.
    DOI:https://doi.org/10.1021/acs.inorgchem.1c01279
  43. A Quasi-stable Molybdenum Sub-oxide with Abundant Oxygen Vacancies that Promotes CO₂ Hydrogenation to Methanol
    Kuwahara, Y.; Mihogi, T.; Hamahara, K.; Kusu, K.; Kobayashi, H.; Yamashita, H.
    CHem. Sci., 2021, 12, 9902–9915.
    DOI:https://doi.org/10.1039/D1SC02550C
  44. Plasmon-induced Catalytic CO₂ Hydrogenation by a Nano-sheet Pt/HxMoO3−y Hybrid with Abundant Surface Oxygen Vacancies
    Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H.
    J. Mater. Chem. A, 2021, 9, 13898–13907.
    DOI:https://doi.org/10.1039/D1TA02277F
  45. Modification of Ti-doped Hematite Photoanode with Quasi-molecular Cocatalyst: A Comparison of Improvement Mechanism Between Non-noble and Noble Metals
    Wang, R.; Kuwahara, Y.; Mori, K.; Qian, X.; Zhao, Y.; Yamashita, H.
    ChemSusChem, 2021, 14, 2180–2187.
    DOI:https://doi.org/10.1002/cssc.202100451
  46. Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion
    Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T.
    J. Am. Chem. Soc., 2021, 143, 12590–12599.
    DOI:https://doi.org/10.1021/jacs.1c04622
  47. Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO₂ Reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka. S.; Matsuda. R.; Kondo. M.; Masaoka, S.
    Small, 2021, 17, 2006150.
    DOI:https://doi.org/10.1002/smll.202006150
  48. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO₂ hydrogenation
    Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H.
    Nature Commun., 2021, 12, 3884.
    DOI:https://doi.org/10.1038/s41467-021-24228-z
  49. Pyridine Ring Modification of Indane-1,3-dione Dimers for Controlof their Crystal Structure
    Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H.
    Asian J. Org. Chem., 2021, 10, 2690–2696.
    DOI:https://doi.org/10.1002/ajoc.202100275
  50. Two-step Conformational Control of a Dibenzo Diazacyclooctane Derivative by Stepwise Protonation
    Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A.
    Asian J. Org. Chem., 2021, 10, 1377–1381.
    DOI:https://doi.org/10.1002/ajoc.202100154
  51. The Dawn of Sumanene Chemistry: My Personal History with π-Figuration
    Sakurai, H.
    Bull. Chem. Soc. Jpn., 2021, 94, 1579–1587.
    DOI:https://doi.org/10.1246/bcsj.20210046
  52. Indium‐catalyzed C–F Bond Transformation through Oxymetalationβ‐fluorine Elimination to Access Fluorinated Isocoumarins
    Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M.
    Chem. - Eur. J., 2021, 27, 8288–8294.
    DOI:https://doi.org/10.1002/chem.202100672
  53. Quick and Easy Method for Drastic Improvement of the Electrochemical CO₂ Reduction Activity an Iron Porphyrin Complex
    Kosugi, K.; Kondo, M.; Masaoka, S.
    Angew. Chem. Int. Ed., 2021, 60, 22070–22074.
    DOI:http://dx.doi.org/10.1002/anie.202110190
  54. Fabrication of Function-Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes
    Iwami, H.; Kondo, M.; Masaoka, S.
    ChemElectroChem, 2021, 9, e202101363.
    DOI:https://doi.org/10.1002/celc.202101363
  55. Design of molecular water oxidation catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., 2021, 50, 6790–6831.
    DOI:https://doi.org/10.1039/D0CS01442G
  56. Support-boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki,T.; Mitsudome, T.
    ACS Sustainable chemistry & Engineering, 2021, 9, 6347–6354.
    DOI:https://doi.org/10.1021/acssuschemeng.1c00447
  57. Supported Cobalt Phosphide Nanoalloy Catalysts for Hydrogenation of Furfurals
    Ichikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizuguchi, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0432.
    DOI:https://doi.org/10.1055/s-0040-1706732
  58. Deoxygenation of Sulfoxides on Nano-Nickel Phosphide/Titania Catalyst
    Fujita, S.; Yamaguchi, S.; Yamazoe, S.; Yamasaki, S.; Mizugaki, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0193.
    DOI:https://doi.org/10.1055/s-0040-1706651
  59. Synthesis of 4,5-Benzotropone π Complexes of Iron, Rhodium, and Iridium and Their Potential Use in Catalytic Borrowing-Hydrogen Reactions
    Kodama, T.; Kawashima, Y.; Deng, Z.; Tobisu, M.
    Inorg. Chem., 2021, 60, 4332–4336.
    DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
  60. Late-stage Derivatization of Buflavine by Nickel-catalyzed Direct Substitution of a Methoxy Group via C–O Bond Activation
    Shimazumi, R.; Morita, K.; Yoshida, T.; Yasui, K.; Tobisu, M.
    Synthesis, 2021, 53, 3037–3044. in press. (Special issue on Bond Activation in Honor of Prof. Shinji Murai)
    DOI:https://doi.org/10.1055/a-1467-2494
  61. Frontiers in water oxidation: Design, activity, and mechanism of molecular catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., in press.
  62. Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S.
    Small, 2021, 17, 2006150.
    DOI:https://doi.org/10.1002/smll.202006150
  63. Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide
    Nakao, S.; Nishimoto, Y.; Yasuda M.
    Chem. Lett. 2021, 350, 538–541.
    DOI:https://doi.org/10.1246/cl.200894
  64. N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of N-Arylacrylamides via the Cleavage of Unactivated C(aryl)–N Bonds
    Yasui, K.; Kamitani, M.; Fujimoto, H.; Tobisu, M.
    Org. Lett. 2021, 23, 1572–1576.
    DOI:https://pubs.acs.org/doi/10.1021/acs.orglett.0c04281
  65. Volcano-Type Correlation between Particle Size and Catalytic Activity on Hydrodechlorination Catalyzed by AuPd Nanoalloy
    Uetake, Y.; Mouri, S.; Haesuwannakij, S.; Okumura, K.; Sakurai H.
    Nanoscale Adv. 2021, 3, 1496–1501.
    DOI:https://doi.org/10.1039/D0NA00951B
  66. Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
    Kranthiraja, K.; Saeki, A.
    Adv. Funct. Mater. 2021, 31, 2011168.
    DOI:https://doi.org/10.1002/adfm.202011168
  67. H2-Free Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
    Yamaguchi, S.; Kondo, H.; Uesugi, K.; Sakoda, K.; Jitsukawa, K.; Mitsudome, T.; Mizugaki, T.
    ChemCatChem 2021, 13, 1135–1139.
    DOI:https://doi.org/10.1002/cctc.202001866
  68. Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
    Fujita, S.; Yamaguchi, S.; Yanasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    Chem. Eur. J. 2021, 27, 4439–4446.
    DOI:https://doi.org/10.1002/chem.202005037
  69. Air-stable and reusable nickel phosphide nanoalloy catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    Green Chem. 2021, 23, 2010–2016.
    DOI:https://doi.org/10.1039/D0GC03301D
  70. Stabilization of Charge-Transfer States in Pentacene Crystal and Its Role in Singlet Fission
    Nagami, T; Miyamoto, H.; Sakai, R.; Nakano, M.
    J. Phys. Chem. C 2021, 125, 2264–2275.
    DOI:https://doi.org/10.1021/acs.jpcc.0c10029
    Supplementary Cover
    https://pubs.acs.org/pb-assets/images/_journalCovers/jpccck/jpccck_v125i004-2.jpg?0.0397094469789554
  71. Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
    Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S.
    Angew. Chem. Int. Ed. 2021, 60, 5965–5969.
    DOI:https://doi.org/10.1002/anie.202015174
  72. Pd-Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO2 to Formate (表Cover)
    Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H.
    J. Phys. Chem. C 2021, 125, 3961–3971.
    DOI:https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10962
  73. (o‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
    Suzuki, K. Nishimoto, Y.; Yasuda, M.
    Chem. –Eur. J. 2021, 27, 3968–3973.
    DOI:https://doi.org/10.1002/chem.202004692

2020年

  1. Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification
    Chutimasakul, T.; Uetake, Y.; Tantirungrotechai, J.; Asoh, T.; Uyama, H.; Sakurai H.
    ACS Omega 2020, 5, 33206–33213.
    DOI:https://pubs.acs.org/doi/abs/10.1021/acsomega.0c04894
  2. Nickel-Catalyzed Decarbonylation of Acylsilanes
    Ito, Y.; Nakatani, S.; Kodama, T.; Tobisu, M.
    J. Org. Chem. 2020, 85, 7588–7594.
    DOI:http://dx.doi.org/10.1021/acs.joc.0c00772