1. Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO₂ Reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka. S.; Matsuda. R.; Kondo. M.; Masaoka, S.
    Small, 2021, 17, 2006150.
  2. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO₂ hydrogenation
    Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H.
    Nature Commun., 2021, ##, ####.
  3. Pyridine Ring Modification of Indane-1,3-dione Dimers for Controlof their Crystal Structure
    Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H.
    Asian J. Org. Chem., 2021, 10, ####–####.
  4. Two-step Conformational Control of a Dibenzo Diazacyclooctane Derivative by Stepwise Protonation
    Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A.
    Asian J. Org. Chem., 2021, 10, 1377–1381.
  5. The Dawn of Sumanene Chemistry: My Personal History with π-Figuration
    Sakurai, H.
    Bull. Chem. Soc. Jpn., 2021, 94, 1579–1587.
  6. Indium‐catalyzed C–F Bond Transformation through Oxymetalationβ‐fluorine Elimination to Access Fluorinated Isocoumarins
    Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M.
    Chem. - Eur. J., 2021, 27, 8288–8294.
  7. Quick and Easy Method for Drastic Improvement of the Electrochemical CO₂ Reduction Activity an Iron Porphyrin Complex
    Kosugi, K.; Kondo, M.; Masaoka, S.
    ####, ####, #, ####–####.
  8. Fabrication of Function-Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes
    Iwami, H.; Kondo, M.; Masaoka, S.
    ####, ####, #, ####–####.
  9. Design of molecular water oxidation catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., 2021, #, ####–####.
  10. Support-boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki,T.; Mitsudome, T.
    ACS Sustainable chemistry & Engineering, 2021, 9, 6347–6354.
  11. Supported Cobalt Phosphide Nanoalloy Catalysts for Hydrogenation of Furfurals
    Ichikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizuguchi, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0432.
  12. Deoxygenation of Sulfoxides on Nano-Nickel Phosphide/Titania Catalyst
    Fujita, S.; Yamaguchi, S.; Yamazoe, S.; Yamasaki, S.; Mizugaki, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0193.
  13. Synthesis of 4,5-Benzotropone π Complexes of Iron, Rhodium, and Iridium and Their Potential Use in Catalytic Borrowing-Hydrogen Reactions
    Kodama, T.; Kawashima, Y.; Deng, Z.; Tobisu, M.
    Inorg. Chem., 2021, 60, 4332–4336.
  14. Late-stage Derivatization of Buflavine by Nickel-catalyzed Direct Substitution of a Methoxy Group via C–O Bond Activation
    Shimazumi, R.; Morita, K.; Yoshida, T.; Yasui, K.; Tobisu, M.
    Synthesis, in press. (Special issue on Bond Activation in Honor of Prof. Shinji Murai)
  15. Frontiers in water oxidation: Design, activity, and mechanism of molecular catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., in press.
  16. Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S.
    Small, in press.
  17. Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide
    Nakao, S.; Nishimoto, Y.; Yasuda M.
    Chem. Lett. in press.
  18. N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of N-Arylacrylamides via the Cleavage of Unactivated C(aryl)–N Bonds
    Yasui, K.; Kamitani, M.; Fujimoto, H.; Tobisu, M.
    Org. Lett. 2021, 23, 1572–1576.
  19. Volcano-Type Correlation between Particle Size and Catalytic Activity on Hydrodechlorination Catalyzed by AuPd Nanoalloy
    Uetake, Y.; Mouri, S.; Haesuwannakij, S.; Okumura, K.; Sakurai H.
    Nanoscale Adv. 2021, 3, 1496–1501.
  20. Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
    Kranthiraja, K.; Saeki, A.
    Adv. Funct. Mater. 2021, 31, 2011168.
  21. H2-Free Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
    Yamaguchi, S.; Kondo, H.; Uesugi, K.; Sakoda, K.; Jitsukawa, K.; Mitsudome, T.; Mizugaki, T.
    ChemCatChem 2021, 13, 1135–1139.
  22. Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
    Fujita, S.; Yamaguchi, S.; Yanasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    Chem. Eur. J. 2021, 27, 4439–4446.
  23. Air-stable and reusable nickel phosphide nanoalloy catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    Green Chem. 2021, 23, 2010–2016.
  24. Stabilization of Charge-Transfer States in Pentacene Crystal and Its Role in Singlet Fission
    Nagami, T; Miyamoto, H.; Sakai, R.; Nakano, M.
    J. Phys. Chem. C 2021, 125, 2264–2275.
    Supplementary Cover採用
  25. Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
    Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S.
    Angew. Chem. Int. Ed. 2021, 60, 5965–5969.
  26. Pd-Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO2 to Formate (表紙採用)
    Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H.
    J. Phys. Chem. C 2021, 125, 3961-3971.
  27. (o‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
    Suzuki, K. Nishimoto, Y.; Yasuda, M.
    Chem. –Eur. J. 2021, 27, 3968–3973.


  1. Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification
    Chutimasakul, T.; Uetake, Y.; Tantirungrotechai, J.; Asoh, T.; Uyama, H.; Sakurai H.
    ACS Omega 2020, 5, 33206–33213.