Synthesis and Characterization of Alkali Metal Salts Bearing a Phenalenyl-Based Tridentate Ligand
Kodama, T.; Noguchi, H.; Tsurugi, H.; Tobisu, M. Chem. Lett., 2024, 53, upae246.
DOI: https://doi.org/10.1093/chemle/upae246
A Nickel Metalloradical Bearing a Phenalenyl-Based Tridentate Ligand
Noguchi, H.; Kodama, T.; Kikkawa, S.; Yamazoe, S.; Tobisu, M. Chem. Lett., 2024, 53, upae236.
DOI: https://doi.org/10.1093/chemle/upae236
Carrier Doping in Semiconducting Carbon Nanotubes with Fluorosumanenes
Uchiyama, H.; Nakano, T.; Yakiyama, Y.; Sakurai, H.; Gao, Y.; Maruyama, M.; Okada, S.; Kataura, H.; Ohno, Y. J. Phys. Chem. C, 2024, 128, 17668–17673.
DOI: https://doi.org/10.1021/acs.jpcc.4c04543
Exceptionally Short Tetracoordinated Carbon–Halogen Bonds in Hexafluorodihalocubanes
Sugiyama, M.; Uetake, Y.; Miyagi, N.; Yoshida, M.; Nozaki, K.; Okazoe, T.; Akiyama, M. J. Am. Chem. Soc., 2024, 146, 30686–30697.
DOI: https://doi.org/10.1021/jacs.4c12732
Complexation by γ-cyclodextrin as a way of improving anticancer potential of sumanene
Kasprzak, A.; Żuchowska, A.; Sakurai, H. Sci. Rep., 2024, 14, 27158.
DOI: https://doi.org/10.1038/s41598-024-78110-1
Synthesis and Characterization of Titanium Oxynitride Catalyst via Direct Ammonia Nitridation of Titanium Polyacrylate for Oxygen Reduction Reaction
Tamaki, Y.; Seino, S.; Shinyoshi, N.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T. J. Mater. Sci.: Mater. Eng., 2024, 19, 40.
DOI: https://doi.org/10.1186/s40712-024-00189-1
Red-light Emitting Orthogonally Trireactive GoldNanoclusters for the Synthesis of MultifunctionalizedNanomaterials
Watanabe, K.; Uetake, Y.; Hata, M.; Kuwano, A.; Yamamoto, R.; Yamamoto, Y.; Kodera, M.; Kitagishi, H.; Niwa, T.; Hosoya, T. Small, 2024, 2408747.
DOI: https://doi.org/10.1002/smll.202408747
Generation of Nickel Siloxycarbene Complexes from Acylsilanes for the Catalytic Synthesis of Silyl Enol Ethers
Matsuura, A.; Ito, Y.; Inagaki, T.; Kodama, T.; Tobisu, M. ACS Catal., 2024, 14, 18216–18222.
DOI: https://pubs.acs.org/doi/10.1021/acscatal.4c06272
Controlled degradation of chemically stable poly(aryl ethers) via directing group-assisted catalysis
Ogawa, S.; Morita, H.; Hsu, Y.-I; Uyama, H.; Tobisu, M. Chem. Sci.,2024, 15, in press.
DOI: https://doi.org/10.1039/D4SC04147JJ
Cu(II) detection by a fluorometric probe based on thiazoline-amidoquinoline derivative and its application to water and food samples
Paisuwan, W.; Srithadindang, K.; Kodama, T.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A. Spectrochim. Acta - A: Mol. Biomol. Spectrosc.,2024, 322, 124706.
DOI: https://doi.org/10.1016/j.saa.2024.124706
Electrochemical monitoring of metabolic activity of methane/methanol converting Methylococcus capsulatus (Bath) cells based on extracellular electron transfer
Sugimoto, S.; Hori, K.; Ishikawa, M.; Ito, H.; Kamachi, T.; Tanaka, K.; Chen, Y. Y.; Nakanishi, S. Electrochemistry,2024, 2, 22007.
DOI: https://doi.org/10.5796/electrochemistry.23-68120
Microbial biomanufacturing using chemically synthesized non-natural sugars as the substrate
Tabata, H.; Nishijima, H.; Yamada, Y.; Miyake, R.; Yamamoto, K.; Kato, S.; Nakanishi, S. ChemBioChem,2024, 2, e202300760.
DOI: https://doi.org/10.1002/cbic.202300760
CO hydrogenation promoted by oxygen atoms adsorbed onto Cu(100)
Nagita, K.; Kamiya, K.; Nakanishi, S.; Hamamoto, Y.; Morikawa, Y. J. Phys. Chem. C,2024, 11, 4607–4615.
DOI: https://doi.org/10.1021/acs.jpcc.4c00666
C−C coupling in CO2 electroreduction on single Cu-modified covalent triazine frameworks: A static and dynamic density functional theory study
Ohashi, K.; Nagita, K.; Yamamoto, H.; Nakanishi, S.; Kamiya, K. ChemElectroChem,2024, 6, e202300693.
DOI: https://doi.org/10.1002/celc.202300693
Light wavelength as a contributory factor of environmental fitness in the cyanobacterial circadian clock
Kawamoto, N.; Nakanishi, S.; Shimakawa, G. Plant and Cell Physiology,2024, 5, 798–808.
DOI: https://doi.org/10.1093/pcp/pcae022
Fast, efficient, narrowband room-temperature phosphorescence from metal-free 1,2-diketones: rational design and the mechanism
Tani, Y.; Miyata, K.; Ou, E.; Oshima, Y.; Komura, M.; Terasaki, M.; Kimura, S.; Ehara, T.; Kubo, K.; Onda, K.; Ogawa, T. Chem. Sci.,2024, 15, ####–####.
DOI: https://doi.org/10.1039/D4SC02841D
Amplification sensing manipulated by a sumanene-based supramolecular polymer as a dynamic allosteric effector
Mizuno, H.; Nakazawa, H.; Miyagawa, A.; Yakiyama, Y.; Sakurai, H.; Fukuhara, G. Sci. Rep., 2024, 14, 12534.
DOI: https://doi.org/10.1038/s41598-024-63304-4
Dehydrogenative Oxidation of Hydrosilanes Using Gold Nanoparticle Deposited on Citric Acid-Modified Fibrillated Cellulose: Unveiling the Effect of Molecular Oxygen
Suwattananuruk, B.; Uetake, Y.; Ichikawa, R.; Toyoshima, R.; Kondoh, H.; Sakurai, H. Nanoscale, 2024, 16, 12474–12481.
DOI: https://doi.org/10.1039/D4NR01184H
Sumanene–carbazole conjugate with push–pull structure and its chemoreceptor application
Ufnal, D.; Cyniak, J. S.; Krzyżanowski, M.; Durka, K.; Sakurai, H.; Kasprzak, A. Org. Biomol. Chem., 2024, 22, 5117–5126.
DOI: https://doi.org/10.1039/D4OB00539B
Strain-induced carbon-carbon bond cleavage of bowl-shaped sumanenone
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Chem. Commun., 2024, 60, 3982–3985.
DOI: https://doi.org/10.1039/d4cc00008k
Reversible Modulation of the Local Environment around Metal Centers Bearing Multifunctional Carbenes
Yamauchi, Y.; Ogoshi, S.; Uetake, Y.; Hoshimoto, Y. Chem. Lett., 2024, 53, upae042.
DOI: https://doi.org/10.1093/chemle/upae042
Biased Bowl-Direction of Monofluorosumanene in the Solid State
Yakiyama, Y.; Li, M.; Zhou, D.; Abe, T.; Sato, C.; Sambe, K.; Akutagawa, T.; Matsumura, T.; Matubayasi, N.; Sakurai, H. J. Am. Chem. Soc., 2024, 146, 5224–5231.
DOI: https://doi.org/10.1021/jacs.3c11311
Expanding the library of sumanene molecular receptors for caesium-selective potentiometric sensors
Ażgin, J.; Wesoły, M.; Durka, K.; Sakurai, H.; Wróblewski, W.; Kasprzak, A. Dalton Trans., 2024, 53, 2964–2972.
DOI: https://doi.org/10.1039/D3DT03885H
Mechanistic Study in Gold Nanoparticle Synthesis through Microchip Laser Ablation in Organic Solvents
Hettiarachchi, B. S.; Takaoka, Y.; Uetake, Y.; Yakiyama, Y.; Yoshikawa, H. Y.; Maruyama, M.; Sakurai, H. Metals, 2024, 14, 155.
DOI: https://doi.org/10.3390/met14020155
Uncovering gold nanoparticle synthesis using a microchip laser system through pulsed laser ablation in aqueous solution
Hettiarachchi, B. S.; Takaoka, Y.; Uetake, Y.; Yakiyama, Y.; Lim, H. H.; Taira, T.; Maruyama, M.; Mori, Y.; Yoshikawa, H. Y.; Sakurai, H. Ind. Chem. Mater., 2024, 2, 340–347.
DOI: https://doi.org/10.1039/D3IM00090G
Oxidation-derived anticancer potential of sumanene-ferrocene conjugates
Kasprzak, A.; Zuchowska, A.; Romanczuk, P.; Kowalczyk, A.; Grudzinski, I. P.; Malkowska, A.; Nowicka, A. M.; Sakurai, H. Dalton Trans., 2024, 53, 56–64.
DOI: https://doi.org/10.1039/d3dt03810f
Controlled Photoinduced Electron Transfer via Triplet in Polymer Matrix Using Electrostatic Interactions
Cao, Y.; Sotome, H.; Kobayashi, Y.; Ito, S.; Yamaguchi, H. J. Photochem. Photobiol. A, 2024, 452, 115593.
DOI: https://doi.org/10.1016/j.jphotochem.2024.115593
Control of sulfur number in sulfur-containing compounds: The effect of base type, equivalent of the base, and reaction solvent in synthesizing linear sulfur
Nishimura, R.; Kobayashi, Y.; Kamioka, R.; Hashimoto, S.; Yamaguchi, H. Chem. Lett., 2024, accepted.
DOI: https://doi.org/10.1093/chemle/upae105
Aromatic halogenation using carborane catalyst
Kona, C. N.; Oku, R.; Nakamura, S.; Miura, M.; Hirano, K.; Nishii, Y. Chem, 2024, 10, 402–413.
DOI: https://doi.org/10.1016/j.chempr.2023.10.006
Direct synthesis of spirobifluorenes by formal dehydrative coupling of biaryls and fluorenones
Kato, Y.; Nishimura, K.; YNishii, Y.; Hirano, K. Chem. Sci., 2024, 15, 2112–2117.
DOI: https://doi.org/10.1039/D3SC05977D
Direct Synthesis of Benzoselenophene and Benzothiophene Derivatives from 1,1-Diarylethenes and Biaryls by Chalcogen Cation-Mediated Successive Bond Formation
Iwamoto, H.; Kojima, Y.; Nishimura, K.; Yasui, K.; Hirano, K. Org. Lett., 2024, 26, 1006–1010.
DOI: https://doi.org/10.1021/acs.orglett.3c04033
Tunable Mechanochromic Luminescence of Benzofuran-Fused Pyrazine: Effects of Alkyl Chain Length and Branching Pattern
Nakamura, S.; Okubo, K.; Nishii, Y.; Hirano, K.; Tohnai, N.; Miura, M. J. Mater. Chem. C, 2024, 12, 2370–2378.
DOI: https://doi.org/10.1039/D3TC04748B
Asymmetric Synthesis of SCF3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes
Kojima, Y.; Nishii, Y.; Hirano, K. Angew. Chem. Int. Ed., 2024, 63, e202403337.
DOI: https://doi.org/10.1002/anie.202403337
Facile Preparation of SeCF3-substituted Alkenes from Alkenyl Iodides and Selenium Powder
Matsui, H.; Kojima, Y.; Hirano, K. Chem. Lett., 2024, 53upae076.
DOI: https://doi.org/10.1093/chemle/upae076
Nickel-Catalyzed Electrophilic Amination of the Biphenylene C-C σ-Bond
Inoue, T.; Nishino, S.; Yasui, K.; Hirano, K. Org. Lett., 2024, 26, 4268–4273.
DOI: https://doi.org/10.1021/acs.orglett.4c01226
Unimolecular Fragment Coupling: A New Bond-Forming Methodology via the Deletion of Atom(s)
Shimazumi, R.; Tobisu, M. JACS Au,2024, ##, #####.
DOI:https://pubs.acs.org/doi/10.1021/jacsau.3c00827
Highly Active and Sulfur-tolerant Ruthenium Phosphide Catalyst for Efficient Reductive Amination of Carbonyl Compounds (cover picture)
Ishikawa, H.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal.,2024, 14, 4501–4509.
DOI:https://doi.org/10.1021/acscatal.3c06179
Air-stable and Highly Active Transition Metal Phosphide Catalysts for Reductive Molecular transformations
Catalysts
Mitsudome, T. Catalysts,2024, 14, 193.
DOI:https://doi.org/10.3390/catal14030193
Single-Carbon Atom Doping Reactions Using Atomic Carbon and Its Equivalents
Fujimoto, H.; Tobisu, M. ChemistryEurope,2024, ##, e202400005.
DOI:http://doi.org/10.1002/ceur.202400005
Palladium-Catalyzed Addition of Trifluoroacetylsilanes to Alkenes and Allenes via the Cleavage of C–Si Bonds
Inagaki, T.; Akita, Y.; Tobisu, M. Org. Lett. ,2024, 26, 2141–2145.
DOI:https://doi.org/10.1021/acs.orglett.4c00595
Catalytic synthesis of β-lactam derivatives by carbonylative cycloaddition of acylsilanes with imines via a palladium Fischer-carbene intermediate
Inagaki, T.; Kodama, T., Tobisu, M. Nature Catal.,2024, 7, 132–138.
DOI:https://www.nature.com/articles/s41929-023-01081-5
Nickel Carbide Nanoparticle Catalyst for Selective Hydrogenation of Nitriles to Primary Amines
Yamaguchi, S.; Kiyohira, D.; Tada, K.; Kawakami, T.; Miura, A.; Mitsudome, T.; Mizugaki, T. Chem. Eur. J,2024, 30, e202303573.
DOI:https://doi.org/10.1002/chem.202303573
Reductive Amination of Carboxylic Acids under H2 using a Heterogeneous Pt–Mo Catalyst
Sakoda, K.; Yamaguchi, S.; Honjo, K.; Kitagawa, Y.; Mitsudome, T.; Mizugaki, T. Green Chem.,2024, 26, 2571–2576. (cover picture)
DOI:https://doi.org/10.1039/D3GC02155F
2023年
Photoinduced crystal melting with luminescence evolution based on conformational isomerisation
Komura, M.; Sotome, H.; Miyasaka, H.; Ogawa, T.; Tani, Y. Chem. Sci.,2023, 14, 5302–5308.
DOI: http://dx.doi.org/10.1039/d3sc00838j
Ultra-Rapid and Specific Gelation of Collagen Molecules for Transparent and Tough Gels by Transition Metal Complexation
Suezawa, T.; Sasaki, N.; Yukawa, Y.; Assan, N.; Uetake, Y.; Onuma, K.; Kamada, R.; Tomioka, D.; Sakurai, H.; Katayama, R.; Inoue, M.; Matsusaki, M. Adv. Sci.,2023, 10, 2302637.
DOI: https://doi.org/10.1002/advs.202302637
Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum
Yamauchi, Y.; Mondori, Y.; Uetake, Y.; Takeichi, Y.; Kawakita, T.; Sakurai, H.; Ogoshi, S.; Hoshimoto, Y. J. Am. Chem. Soc.,2023, 145, 16938–16947.
DOI: https://doi.org/10.1021/jacs.3c06267
Sumanene-stacked supramolecular polymers. Dynamic, solvation-directed control
Mizuno, H.; Nakazawa, H.; Harada, M.; Yakiyama, Y.; Sakurai, H.; Fukuhara, G. Chem. Commun.,2023, 59, 9595–9598.
DOI: https://doi.org/10.1039/D3CC02990E
A sumanene-containing magnetic nanoadsorbent for the removal of caesium salts from aqueous solutions
Kasprzak, A.; Matczuk, M.; Sakurai, H. Chem. Commun.,2023, 59, 9591–9594.
DOI: https://doi.org/10.1039/D3CC02657D
Dihydroxyacetone Production by Glycerol Oxidation under Moderate Condition Using Pt Loaded on La1-xBixOF Solids
Nunotani, N.; Takashima, M.; Choi, Y.-B.; Uetake, Y.; Sakurai, H.; Imanaka, N. Chem. Commun.,2023, 59, 9533–9536.
DOI: https://doi.org/10.1039/D3CC01734F
Radiation-induced synthesis of carbon-supported niobium oxide nanoparticle catalysts and investigation of heat treatment conditions to improve the oxygen reduction reaction activity
Shinyoshi, N.; Seino, S.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T. J. Ceram. Soc. Jpn.,2023, 131, 575–580.
DOI: https://doi.org/10.2109/jcersj2.23039
Fluorosumanenes as building blocks for organic crystalline dielectrics
Yakiyama, Y.; Li, M.; Sakurai, H. Pure Appl. Chem.,2023, 95, 421–430.
DOI: https://doi.org/10.1515/pac-2023-0211
Derivatization of sumanenetrione through Lewis acid-mediated Suzuki-Miyaura coupling and an unprecedented ring opening
Han, J.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Chem. Commun.,2023, 59, 4632–4635.
DOI: https://doi.org/10.1039/D3CC00394A
Application of Monoferrocenylsumanenes Derived from Sonogashira Cross-Coupling or Click Chemistry Reactions in Highly Sensitive and Selective Cesium Cation Electrochemical Sensors
Kasprzak, A.; Gajda-Walczak, A.; Kowalczyk, A.; Wagner, B.; Nowicka, A. M.; Nishimoto, M.; Koszytkowska-Stawińska, M.; Sakurai, H. J. Org. Chem.,2023, 88, 4199–4208.
DOI: https://doi.org/10.1021/acs.joc.2c02767
Synthesis of π-extended and bowl-shaped sumanene-ferrocene conjugates and their application in highly selective and sensitive cesium cations electrochemical sensors
Cyniak, J.; Kocobolska, Ł.; Bojdecka, N.; Gajda-Walczak, A.; Kowalczyk, A.; Wagner, B.; Nowicka, A.; Sakurai, H.; Kasprzak, A. Dalton Trans.,2023, 52, 3137–3147.
DOI: https://doi.org/10.1039/D3DT00084B
Size-selective Preparation of Gold Nanoparticles Stabilized on Chitosan Using the Matrix-Transfer Method
Assan, N.; Uetake, Y.; Sakurai, H. J. Nanopart. Res.,2023, 25, 50.
DOI: https://doi.org/10.1007/s11051-023-05700-x
Acceleration Effect of Bowl‐shaped Structure in Aerobic Oxidation Reaction: Synthesis of Homosumanene ortho‐Quinone and Azaacene‐Fused Homosumanenes
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Saeki, A.; Freudenberg, J.; Bunz, U. H. F.; Sakurai, H. Chem. Eur. J.,2023, 29, e202203461.
DOI: https://doi.org/10.1002/chem.202203461
Synthesis of fully substituted sumanenes at the aromatic periphery through hexabromomethylation
Nakazawa, H.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Asian J. Org. Chem.,2023, 12, e202200585.
DOI: https://doi.org/10.1002/ajoc.202200585
Pentagon-fused sumanenes on the aromatic peripheries en route to the bottom-up synthesis of fullerenes
Nakazawa, H.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Synlett,2023, 34, 374–378.
DOI: https://doi.org/10.1055/a-1992-0487
Thermodynamic differentiation of the two sides of azabuckybowl through complexation with square planar platinum(II)
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Chem. Asian J.,2023, 18, e202201103.
DOI: https://doi.org/10.1002/asia.202201103
Palladium-catalyzed synthesis of 4-sila-4H-benzo[d][1,3]oxazines by intramolecular Hiyama coupling
Lee, D.; Shintani, R. Chem. Sci.,2023, 14, 4114–4119.
DOI: https://doi.org/10.1039/D2SC06425A
A Kinetically Stabilized Nitrogen-Doped Triangulene Cation: Stable and NIR Fluorescent Diradical Cation with Triplet Ground State
Arikawa, S.; Shimizu, A.; Shiomi, D.; Sato, K.; Takui, T.; Sotome, H.; Miyasaka, H.; Murai, M.; Yamaguchi, S.; Shintani, R. Angew. Chem., Int. Ed.,2023, 62, e202302714.
DOI: https://doi.org/10.1002/anie.202302714
Zwitterionic Open-Shell Singlet Diradical with Solvent-Dependent Singlet–Triplet Energy Gap
Shimizu, A.; Hayashida, M.; Ochi, Y.; Shiomi, D.; Sato, K.; Takui, T.; Shintani, R. Asian J. Org. Chem.,2023, 12, e202300224.
DOI: https://doi.org/10.1002/ajoc.2023002244
Copper-Catalyzed Synthesis of 3-Silyl-1-silacyclopent-2-enes via Regio- and anti-Selective Addition of Silylboronates to Silicon-Containing Internal Alkynes
Kondo, R.; Moniwa, H.; Shintani, R. Org. Lett.,2023, 25, 4193–4197.
DOI: https://doi.org/10.1021/acs.orglett.3c01526
Palladium-catalyzed synthesis of benzosilacyclobutenes via position-selective C(sp3)–H arylation
Hamada, N.; Hayashi, D.; Shintani, R. Chem. Commun.,2023, 59, 9122–9125.
DOI: https://doi.org/10.1039/D3CC00442B
Copper-Catalyzed Regio- and Stereoselective Formal Hydro(borylmethylsilyl)ation of Internal Alkynes via Alkenyl-to-Alkyl 1,4-Copper Migration
Moniwa, H.; Yamanaka, M.; Shintani, R. J. Am. Chem. Soc.,2023, 145, 23470–23477.
DOI: https://doi.org/10.1021/jacs.3c06187
Palladium-Catalyzed Skeletal Rearrangement of Substituted 2-Silylaryl Triflates via 1,5-C–Pd/C–Si Bond Exchange
Hayashi, D.; Tsuda, T.; Shintani, R. Angew. Chem., Int. Ed.,2023, 62, e202313171.
DOI: https://doi.org/10.1002/anie.202313171
Open-Shell Germylene Stabilized by a Phenalenyl-Based Ligand
Kodama, T.; Uchida, K.; Nakasuji, C.; Kishi, R.; Kitagawa, Y.; Tobisu, M. Inorg. Chem., 2023, 62, 7861–7867.
DOI: https://doi.org/10.1021/acs.inorgchem.3c00583
Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
Nishino, S.; Hirano, K. Asian J. Org. Chem.,2023, 12, e202200636.
DOI: https://doi.org/10.1002/ajoc.202200636
Synthesis of α-Aminophosphonates by Umpolung-Enabled Cu-Catalyzed Regioselective Hydroamination
Nakamura, S.; Nishino, S.; Hirano, K. J. Org. Chem.,2023, 88, 1270–1281.
DOI: https://doi.org/10.1021/acs.joc.2c02632
One-Step Synthesis of Benzophosphole Derivatives from Arylalkynes by Phosphenium-Dication-Mediated Sequential C-P/C-C Bond Forming Reaction
Nishimura, K.; Xu, S.; Nishii, Y.; Hirano, K. Org. Lett.,2023, 25, 1503–1508.
DOI: https://doi.org/10.1021/acs.orglett.3c00263
Preparation and Use of (γ,γ-Dioxyallyl)boronates
Nishino, S.; Nishii, Y.; Hirano, K. Synlett,2023, 34, 2205–2209.
DOI: https://doi.org/10.1055/a-2051-1054
Rhodium-Catalyzed Isoquinoline Synthesis Using Vinyl Selenone as Oxidizing Acetylene Surrogate
Inami, A.; Nishii, Y.; Hirano, K.; Miura, M. Org. Lett.,2023, 25, 3206–3209.
DOI: https://doi.org/10.1021/acs.orglett.3c00826
Copper-mediated Trifluoromethylthiolation of Alkenyl Iodides with AgSCF3
Kojima,Y.; Hirano, K. Chem. Lett.,2023, 52, 791–793.
DOI: https://doi.org/10.1246/cl.230335
Stimuli-Responsive Properties on a Bisbenzofuropyrazine Core: Mechanochromism and Concentration-Controlled Vapochromism
Nakamura, S.; Okubo, K.; Nishii, Y.; Hirano, K.; Tohnai, N.; Miura, M. Chem. Eur. J.,2023, 29, e202302605.
DOI: https://doi.org/10.1002/chem.202302605
Rhodium-Catalyzed Direct Vinylene Annulation of 2-Aryloxazoline and Cascade Ring-Opening Using Vinyl Selenone
Kitano, J.; Nishii, Y.; Hirano, K.; Miura, M. Synlett,2023.
DOI: https://doi.org/10.1055/a-2214-5299
Synthesis, Structure, and Reactivity of a Gallylene Derivative Bearing a Phenalenyl-Based Ligand
Kodama, T.; Mukai, N.; Tobisu, M. Inorg. Chem.,2023, 62,6554–6559.
DOI:https://doi.org/10.1021/acs.inorgchem.3c00697
Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst(special issue for Japan/Netherlands Gratama Workshop)
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Synlett,2023, 35, 1296–1300.
DOI:https://10.1055/a-2191-5906
Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation
Tsuda, T.; Sheng, M.; Ishikawa, H.; Yamazoe, S.; Yamazaki, J.; Hirayama, M.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Nat Commun.,2023, 14, 5959.
DOI:https://www.nature.com/articles/s41467-023-41627-6
Robust Ruthenium Phosphide Catalyst for Hydrogenation of Sulfur-Containing Nitroarenes(front cover)
Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal.,2023, 13, 5744–5751.
DOI:https://doi.org/10.1021/acscatal.3c00128
Highlighted in Synfacts,2023, 19, 0705.
Copper nitride nanocube catalyst for the highly efficient hydroboration of alkynes(front cover)
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Org. Biomol. Chem.,2023, 21, 1404–1410.
DOI:https://doi.org/10.1039/D2OB02130G
Green Oxidation of Indoles Using Molecular Oxygen over a Copper Nitride Nanocube Catalyst.
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Eur. J. Org. Chem.,2022, 2022, e20220826.
DOI:https://doi.org/10.1002/ejoc.202200826
Single–carbon atom transfer to α,β-unsaturated amides from N-heterocyclic carbenes
Kamitani, M.; Nakayasu, B.; Yasui, K.; Fujimoto, H.; Kodama, T.; Tobisu, M. Science,2023, 379, 484–488.
DOI:https://www.science.org/doi/10.1126/science.ade5110
1,2-Diacylation of Alkynes Using Acyl Fluorides and Acylsilanes by P(III)/P(V) Catalysis
Fujimoto, H.; Yamamura, S.; Kusano, M.; Tobisu, M. Org. Lett.,2023, 25, 336–340.
DOI:https://doi.org/10.1021/acs.orglett.2c03910
Selective and High-Rate CO2 Electroreduction by Metal-Doped Covalent Triazine Frameworks: A Computational and Experimental Hybrid Approach
Kato, S.; Hashimoto, T.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Chem. Sci.,2023, 14, 613–620.
DOI:https://doi.org/10.1039/D2SC03754H
Ultra-high-rate CO2 reduction reactions to multicarbon products with a current density of 1.7 A cm-2 in neutral electrolytes
Inoue, A.; Harada, T.; Nakanishi, S.; Kamiya, K. EES. Catal.,2023, 1, 9–16.
DOI:https://doi.org/10.1039/D2EY00035K
Stacked antiaromaticity in the π-congested space between the aromatic rings in the anthracene dimer
Nishiuchi, T.; Makihara, Y.; Kishi, R.; Sato, H.; Kubo, T. J. Phys. Org. Chem.,2023, 36, e4451.
DOI:https://doi.org/10.1002/poc.4451
Finite element modeling of cycle characteristics of Li–O2 secondary batteries considering surface- and solution-route discharge reactions
Mukouyama, Y.; Hanada, S.; Goto, T.; Nakanishi, S. J. Phys. Chem. C,2023, 22, 10459–10469.
DOI: https://doi.org/10.1021/acs.jpcc.3c01940
Carbon monoxide reduction reaction to produce multicarbon products in acidic electrolytes using gas diffusion electrode loaded with copper nanoparticles
Kurihara, R.; Nagita, K.; Ohashi, K.; Mukouyama, Y.; Harada, T.; Nakanishi, S.; Kamiya, k. Adv. Mater.Interface,2023, 6, 2300731.
DOI: https://doi.org/10.1002/admi.202300731
Construction of an autocatalytic reaction cycle in neutral medium for synthesis of life-sustaining sugars
Tabata, H.; Chikatani, G.; Nishijima, H.; Harada, T.; Miyake, R.; Kato, S.; Igarashi, K.; Mukouyama, Y.; Shirai, S.; Waki, M.; Hase, Y.; Nakanishi, S. Chem. Sci.,2023, 14, 13475–13484.
DOI: https://doi.org/10.1039/D3SC03377E
Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries
Yu, W.; Yoshii, T.; Tang, A.A.R.; Pan, Z. Z.; Inoue, K.; Kotani, M.; Tanaka, H.; Scholtzová, E.; Tunega, D.; Nishina, Y.; Nishioka, K.; Nakanishi, S.; Zhou, Y.; Terasaki, O.; Nishihara, H. Adv. Sci.,2023, 16, 2300268.
DOI: https://doi.org/10.1002/advs.202300268
Angstrom-confined electrochemical synthesis of sub-unit cell non van der waals 2D metal oxides
Ji, D.; Lee, Y.; Nishina, Y.; Kamiya, K.; Rahman Daiyan, R.; Chu, D.; Wen, X.; Yoshimura, M.; Kumar, P.; Andreeva, D.V.; Kostya Sovoselov, K.; Lee, G.H.; Joshi, R.; Foller, T. Adv. Mater.,2023, 30, 2301506.
DOI: https://doi.org/10.1002/adma.202301506
2022年
N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li-O2 Batteries
Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater., 2022, 5, 4404–4412.
DOI: https://doi.org/10.1021/acsaem.1c03999
Order-of-Magnitude Enhancement in Photocurrent Generation of Synechocystis Sp. PCC 6803 by Outer Membrane Deprivation
Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S. Nat. Commun., 2022, 13, 3067.
DOI: https://doi.org/10.1038/s41467-022-30764-z
Structural Symmetry and Spin Multiplicity of Sumanene Derivative Radical Molecules
Baba, Y.; Sakurai, H.; Muraoka, A. J. Comput. Chem. Jpn.,2022, 21, 55–57.
DOI: https://doi.org/10.2477/jccj.2022-0033
Intramolecular hydroamination catalysed by gold nanoparticles deposited on fibrillated cellulose
Uetake, Y.; Suwattananuruk, B.; Sakurai, H. Sci. Rep.,2022, 12, 20602.
DOI: https://doi.org/10.1038/s41598-022-24955-3
Synthesis of Sumanene-fused Acenes
Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H. Asian J. Org. Chem.,2022, 11, e202200471.
DOI: https://doi.org/10.1002/ajoc.202200471
Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P. J. Phys. Chem. A,2022, 126, 5283–5293.
DOI: https://doi.org/10.1021/acs.jpca.2c02906
Turning Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H. Chem. Commun.,2022, 58, 8950–8953.
DOI: https://doi.org/10.1039/D2CC02766F
Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T. RADIOISOTOPES,2022, 71, 171–177.
DOI: https://doi.org/10.3769/radioisotopes.71.171
Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
Yamauchi, Y.; Hoshimoto, Y.; Kawakita, T.; Kinoshita, T.; Uetake, Y.; Sakurai, H.; Ogoshi, S. J. Am. Chem. Soc.,2022, 144, 8818–8826.
DOI: https://doi.org/10.1021/jacs.2c02870
Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
Li, M.; Wu, J.-Y.; Sambe, K.; Yakiyama, Y.; Akutagawa, T.; Kajitani, T.; Fukushima, T.; Matsuda, K.; Sakurai, H. Mater. Chem. Front.,2022, 6, 1752–1758.
DOI: https://doi.org/10.1039/D2QM00134A
Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H. J. Org. Chem.,2022, 87, 2508–2519.
DOI: https://doi.org/10.1021/acs.joc.1c02416
Tuning the sumanene receptor structure towards the development of potentiometric sensors
Kasprzak, A.; Tobolska, A.; Sakurai, H.; Wróblewski, W. Dalton Trans.,2022, 51, 468–472.
DOI: https://doi.org/10.1039/d1dt03467g
Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene-within-an-Annulene Models
Miyoshi, H.; Sugiura, R.; Kishi, R.; Spisak, S. N.; Wei, Z.; Muranaka, A.; Uchiyama, M.; Kobayashi, N.; Chatterjee, S.; Ie, Y.; Hisaki, I.; Petrukhina, M. A.; Nishinaga, T.; Nakano, M.; Tobe, Y. Angew. Chem. Int. Ed.,2022, 61, e202115316.
DOI:https://doi.org/10.1002/anie.202115316
Medium Diradical Character, Small Hole and Electron Reorganization Energies and Ambipolar Transistors in Difluorenoheteroles
Mori, S.; Moles Quintero, S.; Tabaka, N.; Kishi, R.; González Núñez, R.; Harbuzaru, A.; Ponce Ortiz, R.; Marín‐Beloqui, J.; Suzuki, S.; Kitamura, C.; Gómez‐García, C. J.; Dai, Y.; Negri, F.; Nakano, M.; Kato, S.; Casado, J. Angew. Chem. Int. Ed.,2022, 61, e202206680.
DOI:https://doi.org/10.1002/anie.202206680
Characterization of resonance structures in aromatic rings of benzene and its heavier-element analogues
Sugahara, T.; Hashizume, D.; Tokitoh, N.; Matsui, H.; Kishi, R.; Nakano, M.; Sasamori, T. Phys. Chem. Chem. Phys.,2022, 24, 22557–22561.
DOI:https://doi.org/10.1039/D2CP03068C
Theoretical study on the structures, electronic properties, and aromaticity of thia[4]circulenes
Hashimoto, S.; Kishi, R.; Tahara, K. New J. Chem.,2022, 46, 22703–22714.
DOI:https://doi.org/10.1039/d2nj04359a
Synthesis of Cage-Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation
Tsutsui, Y.; Tanaka, D.; Manabe, Y.; Ikinaga, Y.; Yano, K.; Fukase, K.; Konishi, A.; Yasuda, M. New J. Chem.,2022, 46, e202202284.
DOI:https://doi.org/10.1039/D2NJ04359A
Lewis Acid-Catalyzed Diastereoselective C–C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,β-Diaryl-β-haloesters
Wang, F.; Nishimoto, Y.; Yasuda, M. Angew. Chem. Int. Ed.,2022, 61, e202204462.
DOI:https://doi.org/10.1002/anie.202204462
anti-Selective Borylstannylation of Alkynes with (o-Phenylenediaminato)borylstannanes by a Radical Mechanism
Suzuki, K.; Sugihara, N.; Nishimoto, Y.; Yasuda, M. Angew. Chem. Int. Ed.,2022, 61, e202201883.
DOI:https://doi.org/10.1002/anie.202201883
Indium-Catalyzed Formal Carbon−Halogen Bond Insertion: Synthesis of α‐Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters
Wang, F.; Nishimoto, Y.; Yasuda, M. Org. Lett.,2022, 24, 1706–1710.
DOI:https://doi.org/10.1021/acs.orglett.2c00343
Bis-periazulene (Cyclohepta[def]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives
Horii, K.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Konishi, A.; Yasuda, M. J. Am. Chem. Soc.,2022, 144, 3370–3375.
DOI:https://doi.org/10.1021/jacs.2c00476
Carboboration-Driven Generation of a Silylium Ion for Vinylic C–F Bond Functionalization by B(C6F5)3 Catalysis
Yata, T.; Nishimoto, Y.; Yasuda, M. Chem. Eur. J.,2022, 28, e202103852.
DOI:https://doi.org/10.1002/chem.202103852
Revisiting Glycosylations Using Glycosyl Fluoride by BF3∙Et2O: Activation of Disarmed Glycosyl Fluorides with High Catalytic Turnover
Yata, T.; Nishimoto, Y.; Yasuda, M. Org. Lett.,2022, 24, 6–10.
DOI:https://doi.org/10.1021/acs.orglett.1c03233
Synthesis and Characterization of Dinaphtho[2,1-a:2,3-f]pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer
Horii, K.; Nogata, A.; Mizuno, Y.; Iwasa, H.; Suzuki, M.; Nakayama, K.; Konishi, A.; Yasuda, M. Chem. Lett.,2022, 51, 325–329.
DOI:https://doi.org/10.1246/cl.210809
Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics
Jinnai, S.; Murayama, K.; Nagai, K.; Mineshita, M.; Kato, K.; Muraoka, A.; Yamakata, A.; Saeki, A.; Kobori, Y.; Ie, Y. J. Mater. Chem. A,2022, 10, 20035–20047.
DOI:https://doi.org/10.1039/D2TA02604J
A Tin Oxide-Coated Copper Foam Hybridized with a Gas Diffusion Electrode for Efficient CO2 Reduction to Formate with a Current Density Exceeding 1 A cm−2
Liu, T.; Ohashi, K.; Nagita, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Small,2022, 18, 2205323.
DOI:https://doi.org/10.1002/smll.202205323
Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation
Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S. Nat. Commun.,2022, 13, 3067.
DOI:https://doi.org/10.1038/s41467-022-30764-z
N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li–O2 Batteries
Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater.,2022, 5, 4404–4412.
DOI:https://doi.org/10.1021/acsaem.1c03999
NADPH production in dark stages is critical for cyanobacterial photocurrent generation: A study using mutants deficient in oxidative pentose phosphate pathway
Hatano, J.; Kusama, S.; Tanaka, K.; Kohara, A.; Miyake, C.; Nakanishi, S.; Shimakawa, G. Photosynth. Res.,2022, 153, 113–120.
DOI:https://doi.org/10.1007/s11120-022-00903-0
Positive Feedback Mechanism to Increase the Charging Voltage of Li‒O2 Batteries
Hase, Y.; Uyama, T.; Nishioka, K.; Seki, J.; Morimoto, K.; Ogihara, N.; Mukouyama, Y.; Nakanishi, S. J. Am. Chem. Soc.,2022, 144, 1296–1305.
DOI:https://doi.org/10.1021/jacs.1c10986
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration
Shintani, R.; Hama, D.; Hamada, N.; Miwa, T. Tetrahedron Lett.,2022, 104, 154301.
DOI:https://doi.org/10.1016/j.tetlet.2022.154031
Synthesis of Poly(arylenevinylene)s by Rhodium-Catalyzed Stitching Polymerization/Alkene Isomerization
Togawa, S.; Shintani, R. J. Am. Chem. Soc.,2022, 144, 18545–.
DOI:https://doi.org/10.1021/jacs.2c07835
Tunable Solid-State Thermochromism: Alkyl Chain Length-Dependent Conformational Isomerization of Bianthrones
Hirao, Y.; Hamamoto, Y.; Kubo, T. Chem. Asian J.,2022, 17, e202200121.
DOI:https://doi.org/10.1039/D1OB02358F
A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
Hirao, Y.; Eto, M.; Teraoka, M.; Kubo, T. Org. Biomol. Chem.,2022, 20, 1671–1679.
DOI:https://doi.org/10.1039/D2SC06003E
anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters
Nishino, S.; Nishii, Y.; Hirano, K. Chem. Sci.,2022, 13, 14387–14394.
DOI:https://doi.org/10.1039/D2SC06003E
Palladium-catalysed C-H arylation of benzophospholes with aryl halides
Xu, S.; Nishimura, K.; Saito, K.; Hirano, K.; Miura, M.; Chem. Sci.,2022, 13, 10950–10960.
DOI:https://doi.org/10.1039/D2SC04311D
Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes
Kojima, Y.; Nishii, Y.; Hirano, K. Org. Lett.,2022, 24, 7450–7454.
DOI:https://doi.org/10.1021/acs.orglett.2c03024
Pd-catalyzed, Ag-assisted C2-H alkenylation of benzophospholes
Tokura, Y.; Xu, S.; Kojima, Y.; Miura, M.; Hirano, K. Chem. Commun.,2022, 58, 12208–12212.
DOI:https://doi.org/10.1039/D2CC04942B
Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
Nishino, S.; Hirano, K. Asian J. Org. Chem.,2022, ##, ####–####.
DOI:https://doi.org/10.1002/ajoc.202200636
Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzene
Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Bull. Chem. Soc. Jpn.,2022, 95, 1591–1599.
DOI:https://doi.org/10.1246/bcsj.20220257
Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P. J. Phys. Chem. A,2022, 126, 5283–5293.
DOI:https://doi.org/10.1021/acs.jpca.2c02906
Synthesis of Sumanene-fused Acenes
Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H. Asian J. Org. Chem.,2022, ##, ####–####.
DOI:https://doi.org/10.1002/ajoc.202200471
Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Bull. Chem. Soc. Jpn.2022, ##, ####–####.
DOI:https://www.journal.csj.jp/doi/abs/10.1246/bcsj.20220257
Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H. J. Org. Chem.,2022, 87, 2508–2519.
DOI:https://doi.org/10.1021/acs.joc.1c02416
Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T. RADIOISOTOPES,2022, 71, 171–177.
DOI:https://doi.org/10.3769/radioisotopes.71.171
Turning the Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H. Chem. Commun.,2022, 58, 8950–8953.
DOI:https://doi.org/10.1039/D2CC02766F
Nickel-catalyzed 1,4-aryl rearrangement of aryl N-benzylimidates via C–O and C–H bond cleavage (cover picture)
Ogawa, S.; Tobisu, M. Chem. Commun.,2022, 58, 7909–7912.
DOI:https://doi.org/10.1039/D2CC02355E
Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate
Shimazumi, R.; Tanimoto, R.; Kodama, T.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 11033–11043.
DOI:https://doi.org/10.1021/jacs.2c04527
Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
Yamauchi, Y.: Hoshimoto, Y.: Kawakita, T.: Kinoshita, T.: Uetake, Y.: Sakurai, H.: Ogoshi, S. J. Am. Chem. Soc.,2022, 144, 8818–8826.
DOI:https://doi.org/10.1021/jacs.2c02870
Tuning the sumanene receptor structure towards the development of potentiometric sensors
Kasprzak, A.: Tobolska, A.: Sakurai, H.: Wróblewski, W. Dalton Trans.,2022, 51, 468–472.
DOI:https://doi.org/10.1021/acs.joc.1c02416
Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
Li, M.; JianYun Wu,J,Y.; Sambe, K.; Yakiyama, Y. ; Akutagawa, T.; Kajitani, T.; Fukushima, T. ; Matsudah K.; Sakurai, H. Mater. Chem. Front.,2022, 6, 1752–1758.
DOI:https://doi.org/10.1039/D2QM00134A
Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T. J. Am. Chem. Soc.,2022, 144, 7479–7488.
DOI:https://doi.org/10.1021/jacs.2c02318
Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use in Catalytic Nucleophilic Aromatic Substitution
Ito, S.; Fujimoto, H.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 6714–6718.
DOI:https://doi.org/10.1021/jacs.2c02579
Nickel-Catalyzed Skeletal Transformation of Tropone Derivatives via C–C Bond Activation: Catalyst-Controlled Access to Diverse Ring Systems
Kodama, T.; Saito, K.; Tobisu, M. Chem. Sci.,2022, 13, 4922–2929.
DOI:https://doi.org/10.1039/D2SC01394K
Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Chem. Eur. J.,2022, 28, e202200286.
DOI:https://doi.org/10.1002/chem.202200286
Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A. Sens. Bio-Sens. Res.,2022, 35, 100470.
DOI:https://doi.org/10.1016/j.sbsr.2021.100470
Palladium-Catalyzed Silylacylation of Allenes Using Acylsilanes
Inagaki, T.; Sakurai, S.; Yamanaka, M. Tobisu, M. Angew. Chem. Ind. Ed.,2022, 61, e202202387.
DOI:https://doi.org/10.1002/anie.202202387
Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst(front cover)
Sakoda, K.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. JACS Au,2022, 2, 665–672.
DOI:https://doi.org/10.1021/jacsau.1c00535
Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus(front cover)
Ishikawa, H.; Yamaguchi, S.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. JACS Au,2022, 2, 419–427.
DOI:https://doi.org/10.1021/jacsau.1c00461
Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M.; Ajavakom, A. Sens. Bio-Sens. Res.,2022, 35, 100470.
DOI:https://doi.org/10.1016/j.sbsr.2021.100470
Overlooked Factors Required for Electrolyte Solvents in Li–O₂ Batteries: Capabilities of Quenching 1O₂ and Forming Highly-Decomposable Li₂O₂
Nishioka, K.; Tanaka, M.; Fujimoto, H.; Amaya, T.; Ogoshi, S.; Tobisu, M.; Nakanishi, S. Angew. Chem. Ind. Ed.,2022, 61, e202112769.
DOI:https://doi.org/10.1002/anie.202112769
Molecular and Spin Structures of a Through-Space Conjugated Triradical System
Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T. Angew. Chem. Ind. Ed.,2022, 61, e202200688.
DOI:https://doi.org/10.1002/anie.202200688
Synthesis, Properties and Chemical Modification of a Persistent Triisopropylsilylethynyl Substituted Tri(9-anthryl)methyl Radical
Nishiuchi, T.; Ishii, D; Aibara, S.; Sato, H.; Kubo, T. Chem. Commun.,2022, 58, 3306–3309.
DOI:https://doi.org/10.1039/D2CC00548D
A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T. Org. Biomol. Chem.,2022, 20, 1671–1679.
DOI:https://doi.org/10.1039/D1OB02358F
Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes
Sakurai, S.; Inagaki, T.; Kodama, T.; Yamanaka, M. Tobisu, M. J. Am. Chem. Soc.,2022, 144, 1099–1105.
DOI:https://pubs.acs.org/doi/10.1021/jacs.1c11497
Nickel-Catalyzed Addition of C–C Bonds of Amides to Strained Alkenes: The 1,2-Carboaminocarbonylation Reaction
Ito, Y.; Nakatani, S.; Shiraki, R.; Kodama, T.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 662–666.
DOI:https://pubs.acs.org/doi/10.1021/jacs.1c09265
Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy
Li, X.; Shigemitsu, H.; Goto, T.; Kida, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y. Nanoscale Adv.,2022, 4, 2992–2995.
DOI:https://doi.org/10.1039/D2NA00318J
Enhanced Photocatalytic Activity of Porphyrin Nanodisks Prepared by Exfoliation of Metalloporphyrin-Based Covalent Organic Frameworks
Li, X.; Nomura, K.; Guedes, A.; Goto, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y. ACS Omega,2022, 7, 7172–7278.
DOI:https://doi.org/10.1021/acsomega.1c06838
Single-molecule Fluorescence Kinetic Sandwich Assay Using a DNA Sequencer
Kawai, K.; Fujitsuka, M. Chem. Lett.,2022, 51, 139–141.
DOI:https://doi.org/10.1246/cl.210726
Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking
Fan, S.; Xu, J.; Osakada, Y.; Hashimoto, K.; Takayama, K.; Natsume, A.; Hirano, M.; Maruyama, A.; Fujitsuka, M.; Kawai, K.; Kawai, K. Chem,2022, 8, 3109–3119.
DOI:https://doi.org/10.1016/j.chempr.2022.07.025
Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA
Fan, S.; Takada, T.; Maruyama, A.; Fujitsuka, M.; Kawai, K. Bull. Chem. Soc. Jpn.,2022, 95, 1697–1702.
DOI:https://doi.org/10.1246/bcsj.20220220
Amphiphilic Rhodamine Nano-assembly as a Type I Supramolecular Photosensitizer for Photodynamic Therapy
Shigemitsu, H.; Sato, K.; Hagio, S.; Tani, Y.; Mori, T.; Ohkubo, K.; Osakada, Y.; Fujitsuka, M.; Kida, T. ACS Appl. Nano Mater.,2022, 5, 14954–14960.
DOI:https://doi.org/10.1021/acsanm.2c03192
Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly
Shigemitsu, H.; Ohkubo, K.; Sato, K.; Bunno, A.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. JACS Au,2022, 2, 1472–1478.
DOI:https://doi.org/10.1021/jacsau.2c00243
2021年
Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting
Cai, X.; Mao, L.; Fujitsuka, M.; Majima, T.; Kasani, S.; Wu, N.; Zhang, J. Nano Res.,2021, 15, 438–445.
DOI:https://doi.org/10.1007/s12274-021-3498-5
Defect-mediated electron transfer in photocatalysts
Xue, J.; Fujitsuka, M.; Majima, T. Chem. Commun.,2021, 57, 3532–2542.
DOI:https://doi.org/10.1039/D1CC00204J
Control of Triplet Blinking Using Cyclooctatetraene to Access the Dynamics of Biomolecules at the Single-Molecule Level
Xu, J.; Fan, S.; Xu, L.; Maruyama, A.; Fujitsuka, M.; Kawai, K. Angew. Chem. Int. Ed.,2021, 60, 12941–12948.
DOI:https://doi.org/10.1002/anie.202101606
Electronic and Structural Properties of 2,3-Naphthalimide in Open-Shell Configurations Investigated by Pulse Radiolytic and Theoretical Approaches
Zhuang, B.; Tojo, S.; Fujitsuka, M. ChemistrySelect,2021, 6, 3331–3338.
DOI:https://doi.org/10.1002/slct.202100417
One-Pot Synthesis of Long Rutile TiO2 Nanorods and Their Photocatalytic Activity for O2 Evolution: Comparison with Near-Spherical Nanoparticles
Yamazaki, S.; Kutoh, M.; Yamazaki, Y.; Yamamoto, N.; Fujitsuka, M. ACS Omega,2021, 6, 31557–31565.
DOI:https://doi.org/10.1021/acsomega.1c04003
Stacked Thiazole Orange Dyes in DNA Capable of Switching Emissive Behavior in Response to Structural Transitions
Takada, T.; Nishida, K.; Honda, Y.; Nakano, A.; Nakamura, M.; Fan, S.; Kawai, K.; Fujitsuka, M.; Yamana, K. ChemBioChem,2021, 22, 2729–2735.
DOI:https://doi.org/10.1002/cbic.202100309
A cyanine dye based supramolecular photosensitizer enabling visible-light-driven organic reaction in water
Shigemitsu, H.; Tamemoto, T.; Ohkubo, K.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. Chem. Commun.,2021, 57, 11217–11220.
DOI:https://doi.org/10.1039/D1CC04685C
Femtosecond time-resolved diffuse reflectance study on facet engineered charge‐carrier dynamics in Ag3PO4 for antibiotics photodegradation
He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T. Appl. Catal., B,2021, 281, 119479.
DOI:https://doi.org/10.1016/j.apcatb.2020.119479
COF-based photocatalyst for energy and environment applications
Li, X.; Kawai, K.; Fujitsuka, M.; Osakada, Y. Surf. Interfaces,2021, 25, 101249.
DOI:https://doi.org/10.1016/j.surfin.2021.101249
Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking
Kawai, K.; Fujitsuka, M.; Maruyama, A. Acc. Chem. Res.,2021, 54, 1001–1010.
DOI:https://doi.org/10.1021/acs.accounts.0c007549
Theoretical Study on Singlet Fission in Aromatic Diaza s-Indacene Dimers
Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M. J. Phys. Chem. A,2021, 125, 3257–3267.
DOI:https://doi.org/10.1021/acs.jpca.0c11598
Characterization of Benzo[a]naphtho[2,3-f]pentalene: Interrelation between Open-shell and Antiaromatic Characters Governed by Mode of the Quinoidal Subunit and Molecular Symmetry
Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M. Chem. Asian. J.,2021, 16, 1553–1561.
DOI:https://doi.org/10.1002/asia.202100398
Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models
Tonami, T.; Sugimori, R.; Sakai, R.; Tokuyama, K.; Miyamoto, H.; Nakano, M. Phys. Chem. Chem. Phys.,2021, 23, 11624–11634.
DOI:https://doi.org/10.1039/D1CP00880C
Theoretical Study on Singlet Fission Dynamics in Slip-Stack-Like Pentacene Ring-Shaped Aggregate Models
Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M. J. Phys. Chem. A,2021, 125, 5586–5600.
DOI:https://doi.org/10.1021/acs.jpca.1c03934
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M. Molecules,2021, 26, 6129.
DOI:https://doi.org/10.3390/molecules26206129
Long Carbon–Carbon Bonding beyond 2 Å in Tris(9-fluorenylidene)methane
Kubo, T.; Suga, Y.; Hashizume, D.; Suzuki, H.; Miyamoto, T.; Okamoto, H.; Kishi, R.; Nakano, M. J. Am. Chem. Soc.,2021, 143, 14360–14366.
DOI:https://doi.org/10.1021/jacs.1c07431
A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ring-Opening of Benzofuran-fused s-Indacenes and Dicyclopenta[b,g]naphthalenes
Barker, J. E.; Price, T. W.; Karas, L. J.; Kishi, R.; MacMillan, S. N.; Zakharov, L. N.; Gómez‐García, C. J.; Wu, J. I.; Nakano, M.; Haley, M. M. Angew. Chem. Int. Ed.,2021, 60, 22385–22392.
DOI:https://doi.org/10.1002/anie.202107855
Insertion of Diazo Esters into C−F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF3 Catalysis with C−F Bond Cleavage and Re-formation (cover picture)
Wang, F.; Nishimoto, Y.; Yasuda, M. J. Am. Chem. Soc.,2021, 143, 20616–20621.
DOI:https://doi.org/10.1021/jacs.1c10517
Strong Metal–Support Interaction in Pd/Ca2AlMnO5+δ: Catalytic NO Reduction over Mn-Doped CaO Shell
Hosokawa, S.; Oshino, Y.; Tanabe, T.; Koga, H.; Beppu, K.; Asakura, H.; Teramura, K.; Motohashi, T.; Okumura, M.; Tanaka, T. ACS Catal.,2021, 11, 7996–8003.
DOI:https://doi.org/10.1021/acscatal.1c01559
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
Era, I.; Kitagawa, Y.; Yasuda, N.; Kamimura, T.; Amamizu, N.; Sato, H.; Cho, K.; Okumura, M.; Nakano, M. Molecules,2021, 26, 6129.
DOI:https://doi.org/10.3390/molecules26206129
Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction (Cover)
Niwa, T.; Uetake, Y.; Isoda, M.; Takimoto, T.; Nakaoka, M.; Hashizume, D.; Sakurai, H.; Hosoya, T. Nature. Catal.,2021, 4, 6593–6597.
DOI:https://doi.org/10.1038/s41929-021-00719-6
1,2,3-Tri(9-anthryl)benzene: Photophysical Properties and Solid State Intermolecular Interactions of Radially Arranged, Congested Aromatic π-Planes (cover picture)
Nishiuchi, T.; Sotome, H.; Shimizu, K.; Miyasaka, H.; Kubo, T. Chem. Eur. J.,2022, 28, e202104245.
DOI:https://doi.org/10.1002/chem.202104245
Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium.
Kasama, K.; Kanomata, K.; Hinami, Y.; Mizuno, K.; Uetake, Y.; Amaya, T.; Sako, M.; Takizawa, S.; Sasai, H.; Akai, S. RSC Adv.,2021, 11, 35342–35350.
DOI:https://doi.org/10.1039/D1RA07723F
Synthesis of Benzoisoselenazolones via Rh(III)-catalyzed Direct Annulative Selenation Using Elemental Selenium.
Xu-Xu, Q.-F.; Nishii, Y.; Uetake, Y.; Sakurai, H.; Miura, M. Chem. Eur. J.,2021, 27, 17952–17959.
DOI:https://doi.org/10.1002/chem.202103485
Pyridine Ring Modification of Indane-1,3-dione Dimers for Control of their Crystal Structure.
Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H. Asian J. Org. Chem.,2021, 10, 2418.
DOI:https://doi.org/10.1002/ajoc.202100376
Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence.
Nishiuchi, T.; Sotome, H.; Fukuuchi, R.; Kamada, K.; Miyasaka, H.; Kubo, T. Aggregate,2021, 2, e126.
DOI:https://doi.org/10.1002/agt2.126
Synthesis and Characterization of 1-Hydroxy-4,5-arene-Fused Tropylium Derivatives
Kodama, T.; Kawashima, Y.; Uchida, K.; Deng, Z.; Tobisu, M. J. Org. Chem.,2021, 86, 13800–13807.
DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds
Sheng, M.; Fujita, S.; Yamaguchi, S.; Yamasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. JACS Au,2021, 1, 501–507.
DOI:https://doi.org/10.1021/jacsau.1c00125
A Nickel Phosphide Nanoalloy Catalyst for the C-3 Alkylation of Oxindoles with Alcohols
Sheng, M.; Fujita, S,; Imagawa, K.; Yamaguchi, S.; Yamasaki, J.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Sci. Rep.,2021, 11, 10673.
DOI:https://doi.org/10.1038/s41598-021-89561-18
A Copper Nitride Catalyst for the Efficient Hydroxylation of Aryl Halides under Ligand-free Conditions (Cover)
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Org. Biomol. Chem.,2021, 19, 6593–6597.
DOI:https://doi.org/10.1039/D1OB00768H
Efficient D-Xylose Hydrogenation to D-Xylitol over a Hydrotalcite-Supported Nickel Phosphide Nanoparticle Catalyst (Cover)
Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Eur. J. Inorg. Chem.,2021, 2021, 3327–3331.
DOI:https://doi.org/10.1002/ejic.202100432
Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines (Cover)
Sheng, M.; Yamaguchi, S.; Nakata, A.; Yamazoe, S.; Nakajima, K.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. ACS Sustainable Chemistry & Engineering,2021, 9, 11238–11246.
DOI:https://doi.org/10.1021/acssuschemeng.1c03667
Synthesis and Catalytic Activity of Atrane-type Hard and Soft Lewis Superacids with a Silyl, Germyl, or Stannyl Cationic Center
Tanaka, D.; Konishi, A.; Yasuda, M. Chem. Asian J.,2021, 16, 3118–3123.
DOI:https://doi.org/10.1002/asia.202100873
Synthesis and pyrolysis of fullerenol-stabilized Pt nanocolloids for unique approach to Pt-doped carbon
Cabello, M. K. E.; Uetake, Y.; Yao, Y.; Kuwabata, S.; Sakurai, H. Chem. Asian J.,2021, 16, 2280–2285.
DOI:https://doi.org/10.1002/asia.202100495
Ruthenium-Catalyzed Isomerization of ortho-Silylanilines to Their Para Isomers
Ishiga, W.; Ohta, M.; Kodama, T.; Tobisu, M. Org. Lett.,2021, 23, 6714–6718.
DOI:https://doi.org/10.1021/acs.orglett.1c022800
Nonfullerene acceptors for P3HT-based organic solar cells
Chatterjee, S.; Jinnai, S.; Ie, Y. J. Mater. Chem. A,2021, 9, 18857–18886.
DOI:https://doi.org/10.1039/D1TA03219D
Photoredox-Catalyzed C−F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position
Sugihara, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M. J. Am. Chem. Soc.,2021, 143, 9308–9313.
DOI:https://doi.org/10.1021/jacs.1c03760
Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
Kranthiraja, K,; Saeki, A. Adv. Funct. Mater.,2021, 31, 92011168.
DOI:https://doi.org/10.1002/adfm.202011168
Indium-catalyzed C–F Bond Transformation through Oxymetalation/β-fluorine Elimination to Access Fluorinated Isocoumarin
Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M. Chem. Eur. J.,2021, 27, 8288–8294.
DOI:https://doi.org/10.1002/chem.202100672
Homologation of Alkyl Acetates, Alkyl Ethers, Acetals and Ketals by Formal Insertion of Diazo Compounds into a Carbon-Carbon Bond
Wang, F.; Yi, J.; Nishimoto, Y.; Yasuda, M. Synthesis,2021, 53, 4004–4019.
DOI:https://doi.org/10.1055/a-1523-1551
Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution
Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S. Inorg. Chem.,2021, 60, 12634–12643.
DOI:https://doi.org/10.1021/acs.inorgchem.1c01279
A Quasi-stable Molybdenum Sub-oxide with Abundant Oxygen Vacancies that Promotes CO₂ Hydrogenation to Methanol
Kuwahara, Y.; Mihogi, T.; Hamahara, K.; Kusu, K.; Kobayashi, H.; Yamashita, H. CHem. Sci.,2021, 12, 9902–9915.
DOI:https://doi.org/10.1039/D1SC02550C
Plasmon-induced Catalytic CO₂ Hydrogenation by a Nano-sheet Pt/HxMoO3−y Hybrid with Abundant Surface Oxygen Vacancies
Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H. J. Mater. Chem. A,2021, 9, 13898–13907.
DOI:https://doi.org/10.1039/D1TA02277F
Modification of Ti-doped Hematite Photoanode with Quasi-molecular Cocatalyst: A Comparison of Improvement Mechanism Between Non-noble and Noble Metals
Wang, R.; Kuwahara, Y.; Mori, K.; Qian, X.; Zhao, Y.; Yamashita, H. ChemSusChem,2021, 14, 2180–2187.
DOI:https://doi.org/10.1002/cssc.202100451
Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion
Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc.,2021, 143, 12590–12599.
DOI:https://doi.org/10.1021/jacs.1c04622
Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO₂ Reduction
Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka. S.; Matsuda. R.; Kondo. M.; Masaoka, S. Small,2021, 17, 2006150.
DOI:https://doi.org/10.1002/smll.202006150
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO₂ hydrogenation
Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H. Nature Commun.,2021, 12, 3884.
DOI:https://doi.org/10.1038/s41467-021-24228-z
Pyridine Ring Modification of Indane-1,3-dione Dimers for Controlof their Crystal Structure
Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H. Asian J. Org. Chem.,2021, 10, 2690–2696.
DOI:https://doi.org/10.1002/ajoc.202100275
Two-step Conformational Control of a Dibenzo Diazacyclooctane Derivative by Stepwise Protonation
Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A. Asian J. Org. Chem.,2021, 10, 1377–1381.
DOI:https://doi.org/10.1002/ajoc.202100154
The Dawn of Sumanene Chemistry: My Personal History with π-Figuration
Sakurai, H. Bull. Chem. Soc. Jpn.,2021, 94, 1579–1587.
DOI:https://doi.org/10.1246/bcsj.20210046
Indium‐catalyzed C–F Bond Transformation through Oxymetalationβ‐fluorine Elimination to Access Fluorinated Isocoumarins
Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M. Chem. - Eur. J.,2021, 27, 8288–8294.
DOI:https://doi.org/10.1002/chem.202100672
Quick and Easy Method for Drastic Improvement of the Electrochemical CO₂ Reduction Activity an Iron Porphyrin Complex
Kosugi, K.; Kondo, M.; Masaoka, S. Angew. Chem. Int. Ed.,2021, 60, 22070–22074.
DOI:http://dx.doi.org/10.1002/anie.202110190
Fabrication of Function-Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes
Iwami, H.; Kondo, M.; Masaoka, S. ChemElectroChem,2021, 9, e202101363.
DOI:https://doi.org/10.1002/celc.202101363
Design of molecular water oxidation catalysts with earth-abundant metal ions
Kondo, M.; Tatewaki, H.; Masaoka, S. Chem. Soc. Rev.,2021, 50, 6790–6831.
DOI:https://doi.org/10.1039/D0CS01442G
Support-boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki,T.; Mitsudome, T. ACS Sustainable chemistry & Engineering,2021, 9, 6347–6354.
DOI:https://doi.org/10.1021/acssuschemeng.1c00447
Supported Cobalt Phosphide Nanoalloy Catalysts for Hydrogenation of Furfurals
Ichikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizuguchi, T.; Mitsudome, T. Synfacts,2021, 17, 0432.
DOI:https://doi.org/10.1055/s-0040-1706732
Deoxygenation of Sulfoxides on Nano-Nickel Phosphide/Titania Catalyst
Fujita, S.; Yamaguchi, S.; Yamazoe, S.; Yamasaki, S.; Mizugaki, T.; Mitsudome, T. Synfacts,2021, 17, 0193.
DOI:https://doi.org/10.1055/s-0040-1706651
Synthesis of 4,5-Benzotropone π Complexes of Iron, Rhodium, and Iridium and Their Potential Use in Catalytic Borrowing-Hydrogen Reactions
Kodama, T.; Kawashima, Y.; Deng, Z.; Tobisu, M. Inorg. Chem.,2021, 60, 4332–4336.
DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
Late-stage Derivatization of Buflavine by Nickel-catalyzed Direct Substitution of a Methoxy Group via C–O Bond Activation
Shimazumi, R.; Morita, K.; Yoshida, T.; Yasui, K.; Tobisu, M. Synthesis,2021, 53, 3037–3044. in press. (Special issue on Bond Activation in Honor of Prof. Shinji Murai)
DOI:https://doi.org/10.1055/a-1467-2494
Frontiers in water oxidation: Design, activity, and mechanism of molecular catalysts with earth-abundant metal ions
Kondo, M.; Tatewaki, H.; Masaoka, S. Chem. Soc. Rev., in press.
Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction
Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S. Small,2021, 17, 2006150.
DOI:https://doi.org/10.1002/smll.202006150
Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide
Nakao, S.; Nishimoto, Y.; Yasuda M. Chem. Lett.2021, 350, 538–541.
DOI:https://doi.org/10.1246/cl.200894
N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of N-Arylacrylamides via the Cleavage of Unactivated C(aryl)–N Bonds
Yasui, K.; Kamitani, M.; Fujimoto, H.; Tobisu, M. Org. Lett.2021, 23, 1572–1576.
DOI:https://pubs.acs.org/doi/10.1021/acs.orglett.0c04281
Volcano-Type Correlation between Particle Size and Catalytic Activity on Hydrodechlorination Catalyzed by AuPd Nanoalloy
Uetake, Y.; Mouri, S.; Haesuwannakij, S.; Okumura, K.; Sakurai H. Nanoscale Adv.2021, 3, 1496–1501.
DOI:https://doi.org/10.1039/D0NA00951B
Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
Kranthiraja, K.; Saeki, A. Adv. Funct. Mater.2021, 31, 2011168.
DOI:https://doi.org/10.1002/adfm.202011168
H2-Free Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
Yamaguchi, S.; Kondo, H.; Uesugi, K.; Sakoda, K.; Jitsukawa, K.; Mitsudome, T.; Mizugaki, T. ChemCatChem2021, 13, 1135–1139.
DOI:https://doi.org/10.1002/cctc.202001866
Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
Fujita, S.; Yamaguchi, S.; Yanasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Chem. Eur. J.2021, 27, 4439–4446.
DOI:https://doi.org/10.1002/chem.202005037
Air-stable and reusable nickel phosphide nanoalloy catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol
Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. Green Chem.2021, 23, 2010–2016.
DOI:https://doi.org/10.1039/D0GC03301D
Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S. Angew. Chem. Int. Ed.2021, 60, 5965–5969.
DOI:https://doi.org/10.1002/anie.202015174
Pd-Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO2 to Formate (表Cover)
Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. J. Phys. Chem. C 2021, 125, 3961–3971.
DOI:https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10962
(o‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
Suzuki, K. Nishimoto, Y.; Yasuda, M. Chem. –Eur. J.2021, 27, 3968–3973.
DOI:https://doi.org/10.1002/chem.202004692
2020年
Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification
Chutimasakul, T.; Uetake, Y.; Tantirungrotechai, J.; Asoh, T.; Uyama, H.; Sakurai H. ACS Omega2020, 5, 33206–33213.
DOI:https://pubs.acs.org/doi/abs/10.1021/acsomega.0c04894
Nickel-Catalyzed Decarbonylation of Acylsilanes
Ito, Y.; Nakatani, S.; Kodama, T.; Tobisu, M. J. Org. Chem.2020, 85, 7588–7594.
DOI:http://dx.doi.org/10.1021/acs.joc.0c00772