Single–carbon atom transfer to α,β-unsaturated amides from N-heterocyclic carbenes
Kamitani, M.; Nakayasu, B.; Yasui, K.; Fujimoto, H.; Kodama, T.; Tobisu, M. Science,2023, 379, 484–488.
DOI:https://www.science.org/doi/10.1126/science.ade5110
1,2-Diacylation of Alkynes Using Acyl Fluorides and Acylsilanes by P(III)/P(V) Catalysis
Fujimoto, H.; Yamamura, S.; Kusano, M.; Tobisu, M. Org. Lett.,2023, 25, ####–####.
DOI:https://doi.org/10.1021/acs.orglett.2c03910
Selective and High-Rate CO2 Electroreduction by Metal-Doped Covalent Triazine Frameworks: A Computational and Experimental Hybrid Approach
Kato, S.; Hashimoto, T.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Chem. Sci.,2023, ##, ####–####.
DOI:https://doi.org/10.1039/D2SC03754H
Ultra-high-rate CO2 reduction reactions to multicarbon products with a current density of 1.7 A cm-2 in neutral electrolytes
Inoue, A.; Harada, T.; Nakanishi, S.; Kamiya, K. EES. Catal.,2023, ##, ####–####.
DOI:https://doi.org/10.1039/D2EY00035K
Stacked antiaromaticity in the π-congested space between the aromatic rings in the anthracene dimer
Nishiuchi, T.; Makihara, Y.; Kishi, R.; Sato, H.; Kubo, T. J. Phys. Org. Chem.,2023, 36, e4451.
DOI:https://doi.org/10.1002/poc.4451
2022年
Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene-within-an-Annulene Models
Miyoshi, H.; Sugiura, R.; Kishi, R.; Spisak, S. N.; Wei, Z.; Muranaka, A.; Uchiyama, M.; Kobayashi, N.; Chatterjee, S.; Ie, Y.; Hisaki, I.; Petrukhina, M. A.; Nishinaga, T.; Nakano, M.; Tobe, Y. Angew. Chem. Int. Ed.,2022, 61, e202115316.
DOI:https://doi.org/10.1002/anie.202115316
Medium Diradical Character, Small Hole and Electron Reorganization Energies and Ambipolar Transistors in Difluorenoheteroles
Mori, S.; Moles Quintero, S.; Tabaka, N.; Kishi, R.; González Núñez, R.; Harbuzaru, A.; Ponce Ortiz, R.; Marín‐Beloqui, J.; Suzuki, S.; Kitamura, C.; Gómez‐García, C. J.; Dai, Y.; Negri, F.; Nakano, M.; Kato, S.; Casado, J. Angew. Chem. Int. Ed.,2022, 61, e202206680.
DOI:https://doi.org/10.1002/anie.202206680
Characterization of resonance structures in aromatic rings of benzene and its heavier-element analogues
Sugahara, T.; Hashizume, D.; Tokitoh, N.; Matsui, H.; Kishi, R.; Nakano, M.; Sasamori, T. Phys. Chem. Chem. Phys.,2022, 24, 22557–22561.
DOI:https://doi.org/10.1039/D2CP03068C
Theoretical study on the structures, electronic properties, and aromaticity of thia[4]circulenes
Hashimoto, S.; Kishi, R.; Tahara, K. New J. Chem.,2022, 46, 22703–22714.
DOI:https://doi.org/10.1039/d2nj04359a
Synthesis of Cage-Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation
Tsutsui, Y.; Tanaka, D.; Manabe, Y.; Ikinaga, Y.; Yano, K.; Fukase, K.; Konishi, A.; Yasuda, M. New J. Chem.,2022, 46, e202202284.
DOI:https://doi.org/10.1039/D2NJ04359A
Lewis Acid-Catalyzed Diastereoselective C–C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,β-Diaryl-β-haloesters
Wang, F.; Nishimoto, Y.; Yasuda, M. Angew. Chem. Int. Ed.,2022, 61, e202204462.
DOI:https://doi.org/10.1002/anie.202204462
anti-Selective Borylstannylation of Alkynes with (o-Phenylenediaminato)borylstannanes by a Radical Mechanism
Suzuki, K.; Sugihara, N.; Nishimoto, Y.; Yasuda, M. Angew. Chem. Int. Ed.,2022, 61, e202201883.
DOI:https://doi.org/10.1002/anie.202201883
Indium-Catalyzed Formal Carbon−Halogen Bond Insertion: Synthesis of α‐Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters
Wang, F.; Nishimoto, Y.; Yasuda, M. Org. Lett.,2022, 24, 1706–1710.
DOI:https://doi.org/10.1021/acs.orglett.2c00343
Bis-periazulene (Cyclohepta[def]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives
Horii, K.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Konishi, A.; Yasuda, M. J. Am. Chem. Soc.,2022, 144, 3370–3375.
DOI:https://doi.org/10.1021/jacs.2c00476
Carboboration-Driven Generation of a Silylium Ion for Vinylic C–F Bond Functionalization by B(C6F5)3 Catalysis
Yata, T.; Nishimoto, Y.; Yasuda, M. Chem. Eur. J.,2022, 28, e202103852.
DOI:https://doi.org/10.1002/chem.202103852
Revisiting Glycosylations Using Glycosyl Fluoride by BF3∙Et2O: Activation of Disarmed Glycosyl Fluorides with High Catalytic Turnover
Yata, T.; Nishimoto, Y.; Yasuda, M. Org. Lett.,2022, 24, 6–10.
DOI:https://doi.org/10.1021/acs.orglett.1c03233
Synthesis and Characterization of Dinaphtho[2,1-a:2,3-f]pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer
Horii, K.; Nogata, A.; Mizuno, Y.; Iwasa, H.; Suzuki, M.; Nakayama, K.; Konishi, A.; Yasuda, M. Chem. Lett.,2022, 51, 325–329.
DOI:https://doi.org/10.1246/cl.210809
Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics
Jinnai, S.; Murayama, K.; Nagai, K.; Mineshita, M.; Kato, K.; Muraoka, A.; Yamakata, A.; Saeki, A.; Kobori, Y.; Ie, Y. J. Mater. Chem. A,2022, 10, 20035–20047.
DOI:https://doi.org/10.1039/D2TA02604J
A Tin Oxide-Coated Copper Foam Hybridized with a Gas Diffusion Electrode for Efficient CO2 Reduction to Formate with a Current Density Exceeding 1 A cm−2
Liu, T.; Ohashi, K.; Nagita, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Small,2022, 18, 2205323.
DOI:https://doi.org/10.1002/smll.202205323
Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation
Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S. Nat. Commun.,2022, 13, 3067.
DOI:https://doi.org/10.1038/s41467-022-30764-z
N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li–O2 Batteries
Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater.,2022, 5, 4404–4412.
DOI:https://doi.org/10.1021/acsaem.1c03999
NADPH production in dark stages is critical for cyanobacterial photocurrent generation: A study using mutants deficient in oxidative pentose phosphate pathway
Hatano, J.; Kusama, S.; Tanaka, K.; Kohara, A.; Miyake, C.; Nakanishi, S.; Shimakawa, G. Photosynth. Res.,2022, 153, 113–120.
DOI:https://doi.org/10.1007/s11120-022-00903-0
Positive Feedback Mechanism to Increase the Charging Voltage of Li‒O2 Batteries
Hase, Y.; Uyama, T.; Nishioka, K.; Seki, J.; Morimoto, K.; Ogihara, N.; Mukouyama, Y.; Nakanishi, S. J. Am. Chem. Soc.,2022, 144, 1296–1305.
DOI:https://doi.org/10.1021/jacs.1c10986
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration
Shintani, R.; Hama, D.; Hamada, N.; Miwa, T. Tetrahedron Lett.,2022, 104, 154301.
DOI:https://doi.org/10.1016/j.tetlet.2022.154031
Synthesis of Poly(arylenevinylene)s by Rhodium-Catalyzed Stitching Polymerization/Alkene Isomerization
Togawa, S.; Shintani, R. J. Am. Chem. Soc.,2022, 144, 18545–.
DOI:https://doi.org/10.1021/jacs.2c07835
Tunable Solid-State Thermochromism: Alkyl Chain Length-Dependent Conformational Isomerization of Bianthrones
Hirao, Y.; Hamamoto, Y.; Kubo, T. Chem. Asian J.,2022, 17, e202200121.
DOI:https://doi.org/10.1039/D1OB02358F
A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
Hirao, Y.; Eto, M.; Teraoka, M.; Kubo, T. Org. Biomol. Chem.,2022, 20, 1671–1679.
DOI:https://doi.org/10.1039/D2SC06003E
anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters
Nishino, S.; Nishii, Y.; Hirano, K. Chem. Sci.,2022, 13, 14387–14394.
DOI:https://doi.org/10.1039/D2SC06003E
Palladium-catalysed C-H arylation of benzophospholes with aryl halides
Xu, S.; Nishimura, K.; Saito, K.; Hirano, K.; Miura, M.; Chem. Sci.,2022, 13, 10950–10960.
DOI:https://doi.org/10.1039/D2SC04311D
Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes
Kojima, Y.; Nishii, Y.; Hirano, K. Org. Lett.,2022, 24, 7450–7454.
DOI:https://doi.org/10.1021/acs.orglett.2c03024
Pd-catalyzed, Ag-assisted C2-H alkenylation of benzophospholes
Tokura, Y.; Xu, S.; Kojima, Y.; Miura, M.; Hirano, K. Chem. Commun.,2022, 58, 12208–12212.
DOI:https://doi.org/10.1039/D2CC04942B
Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
Nishino, S.; Hirano, K. Asian J. Org. Chem.,2022, ##, ####–####.
DOI:https://doi.org/10.1002/ajoc.202200636
Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzene
Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Bull. Chem. Soc. Jpn.,2022, 95, 1591–1599.
DOI:https://doi.org/10.1246/bcsj.20220257
Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P. J. Phys. Chem. A,2022, 126, 5283–5293.
DOI:https://doi.org/10.1021/acs.jpca.2c02906
Synthesis of Sumanene-fused Acenes
Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H. Asian J. Org. Chem.,2022, ##, ####–####.
DOI:https://doi.org/10.1002/ajoc.202200471
Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Bull. Chem. Soc. Jpn.2022, ##, ####–####.
DOI:https://www.journal.csj.jp/doi/abs/10.1246/bcsj.20220257
Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H. J. Org. Chem.,2022, 87, 2508–2519.
DOI:https://doi.org/10.1021/acs.joc.1c02416
Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T. RADIOISOTOPES,2022, 71, 171–177.
DOI:https://doi.org/10.3769/radioisotopes.71.171
Turning the Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H. Chem. Commun.,2022, 58, 8950–8953.
DOI:https://doi.org/10.1039/D2CC02766F
Nickel-catalyzed 1,4-aryl rearrangement of aryl N-benzylimidates via C–O and C–H bond cleavage (cover picture)
Ogawa, S.; Tobisu, M. Chem. Commun.,2022, 58, 7909–7912.
DOI:https://doi.org/10.1039/D2CC02355E
Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate
Shimazumi, R.; Tanimoto, R.; Kodama, T.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 11033–11043.
DOI:https://doi.org/10.1021/jacs.2c04527
Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
Yamauchi, Y.: Hoshimoto, Y.: Kawakita, T.: Kinoshita, T.: Uetake, Y.: Sakurai, H.: Ogoshi, S. J. Am. Chem. Soc.,2022, 144, 8818–8826.
DOI:https://doi.org/10.1021/jacs.2c02870
Tuning the sumanene receptor structure towards the development of potentiometric sensors
Kasprzak, A.: Tobolska, A.: Sakurai, H.: Wróblewski, W. Dalton Trans.,2022, 51, 468–472.
DOI:https://doi.org/10.1021/acs.joc.1c02416
Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
Li, M.; JianYun Wu,J,Y.; Sambe, K.; Yakiyama, Y. ; Akutagawa, T.; Kajitani, T.; Fukushima, T. ; Matsudah K.; Sakurai, H. Mater. Chem. Front.,2022, 6, 1752–1758.
DOI:https://doi.org/10.1039/D2QM00134A
Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T. J. Am. Chem. Soc.,2022, 144, 7479–7488.
DOI:https://doi.org/10.1021/jacs.2c02318
Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use in Catalytic Nucleophilic Aromatic Substitution
Ito, S.; Fujimoto, H.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 6714–6718.
DOI:https://doi.org/10.1021/jacs.2c02579
Nickel-Catalyzed Skeletal Transformation of Tropone Derivatives via C–C Bond Activation: Catalyst-Controlled Access to Diverse Ring Systems
Kodama, T.; Saito, K.; Tobisu, M. Chem. Sci.,2022, 13, 4922–2929.
DOI:https://doi.org/10.1039/D2SC01394K
Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Chem. Eur. J.,2022, 28, e202200286.
DOI:https://doi.org/10.1002/chem.202200286
Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A. Sens. Bio-Sens. Res.,2022, 35, 100470.
DOI:https://doi.org/10.1016/j.sbsr.2021.100470
Palladium-Catalyzed Silylacylation of Allenes Using Acylsilanes
Inagaki, T.; Sakurai, S.; Yamanaka, M. Tobisu, M. Angew. Chem. Ind. Ed.,2022, 61, e202202387.
DOI:https://doi.org/10.1002/anie.202202387
Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst(front cover)
Sakoda, K.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. JACS Au,2022, 2, 665–672.
DOI:https://doi.org/10.1021/jacsau.1c00535
Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus(front cover)
Ishikawa, H.; Yamaguchi, S.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. JACS Au,2022, 2, 419–427.
DOI:https://doi.org/10.1021/jacsau.1c00461
Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M.; Ajavakom, A. Sens. Bio-Sens. Res.,2022, 35, 100470.
DOI:https://doi.org/10.1016/j.sbsr.2021.100470
Overlooked Factors Required for Electrolyte Solvents in Li–O₂ Batteries: Capabilities of Quenching 1O₂ and Forming Highly-Decomposable Li₂O₂
Nishioka, K.; Tanaka, M.; Fujimoto, H.; Amaya, T.; Ogoshi, S.; Tobisu, M.; Nakanishi, S. Angew. Chem. Ind. Ed.,2022, 61, e202112769.
DOI:https://doi.org/10.1002/anie.202112769
Molecular and Spin Structures of a Through-Space Conjugated Triradical System
Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T. Angew. Chem. Ind. Ed.,2022, 61, e202200688.
DOI:https://doi.org/10.1002/anie.202200688
Synthesis, Properties and Chemical Modification of a Persistent Triisopropylsilylethynyl Substituted Tri(9-anthryl)methyl Radical
Nishiuchi, T.; Ishii, D; Aibara, S.; Sato, H.; Kubo, T. Chem. Commun.,2022, 58, 3306–3309.
DOI:https://doi.org/10.1039/D2CC00548D
A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T. Org. Biomol. Chem.,2022, 20, 1671–1679.
DOI:https://doi.org/10.1039/D1OB02358F
Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes
Sakurai, S.; Inagaki, T.; Kodama, T.; Yamanaka, M. Tobisu, M. J. Am. Chem. Soc.,2022, 144, 1099–1105.
DOI:https://pubs.acs.org/doi/10.1021/jacs.1c11497
Nickel-Catalyzed Addition of C–C Bonds of Amides to Strained Alkenes: The 1,2-Carboaminocarbonylation Reaction
Ito, Y.; Nakatani, S.; Shiraki, R.; Kodama, T.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 662–666.
DOI:https://pubs.acs.org/doi/10.1021/jacs.1c09265
Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy
Li, X.; Shigemitsu, H.; Goto, T.; Kida, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y. Nanoscale Adv.,2022, 4, 2992–2995.
DOI:https://doi.org/10.1039/D2NA00318J
Enhanced Photocatalytic Activity of Porphyrin Nanodisks Prepared by Exfoliation of Metalloporphyrin-Based Covalent Organic Frameworks
Li, X.; Nomura, K.; Guedes, A.; Goto, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y. ACS Omega,2022, 7, 7172–7278.
DOI:https://doi.org/10.1021/acsomega.1c06838
Single-molecule Fluorescence Kinetic Sandwich Assay Using a DNA Sequencer
Kawai, K.; Fujitsuka, M. Chem. Lett.,2022, 51, 139–141.
DOI:https://doi.org/10.1246/cl.210726
Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking
Fan, S.; Xu, J.; Osakada, Y.; Hashimoto, K.; Takayama, K.; Natsume, A.; Hirano, M.; Maruyama, A.; Fujitsuka, M.; Kawai, K.; Kawai, K. Chem,2022, 8, 3109–3119.
DOI:https://doi.org/10.1016/j.chempr.2022.07.025
Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA
Fan, S.; Takada, T.; Maruyama, A.; Fujitsuka, M.; Kawai, K. Bull. Chem. Soc. Jpn.,2022, 95, 1697–1702.
DOI:https://doi.org/10.1246/bcsj.20220220
Amphiphilic Rhodamine Nano-assembly as a Type I Supramolecular Photosensitizer for Photodynamic Therapy
Shigemitsu, H.; Sato, K.; Hagio, S.; Tani, Y.; Mori, T.; Ohkubo, K.; Osakada, Y.; Fujitsuka, M.; Kida, T. ACS Appl. Nano Mater.,2022, 5, 14954–14960.
DOI:https://doi.org/10.1021/acsanm.2c03192
Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly
Shigemitsu, H.; Ohkubo, K.; Sato, K.; Bunno, A.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. JACS Au,2022, 2, 1472–1478.
DOI:https://doi.org/10.1021/jacsau.2c00243
2021年
Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting
Cai, X.; Mao, L.; Fujitsuka, M.; Majima, T.; Kasani, S.; Wu, N.; Zhang, J. Nano Res.,2021, 15, 438–445.
DOI:https://doi.org/10.1007/s12274-021-3498-5
Defect-mediated electron transfer in photocatalysts
Xue, J.; Fujitsuka, M.; Majima, T. Chem. Commun.,2021, 57, 3532–2542.
DOI:https://doi.org/10.1039/D1CC00204J
Control of Triplet Blinking Using Cyclooctatetraene to Access the Dynamics of Biomolecules at the Single-Molecule Level
Xu, J.; Fan, S.; Xu, L.; Maruyama, A.; Fujitsuka, M.; Kawai, K. Angew. Chem. Int. Ed.,2021, 60, 12941–12948.
DOI:https://doi.org/10.1002/anie.202101606
Electronic and Structural Properties of 2,3-Naphthalimide in Open-Shell Configurations Investigated by Pulse Radiolytic and Theoretical Approaches
Zhuang, B.; Tojo, S.; Fujitsuka, M. ChemistrySelect,2021, 6, 3331–3338.
DOI:https://doi.org/10.1002/slct.202100417
One-Pot Synthesis of Long Rutile TiO2 Nanorods and Their Photocatalytic Activity for O2 Evolution: Comparison with Near-Spherical Nanoparticles
Yamazaki, S.; Kutoh, M.; Yamazaki, Y.; Yamamoto, N.; Fujitsuka, M. ACS Omega,2021, 6, 31557–31565.
DOI:https://doi.org/10.1021/acsomega.1c04003
Stacked Thiazole Orange Dyes in DNA Capable of Switching Emissive Behavior in Response to Structural Transitions
Takada, T.; Nishida, K.; Honda, Y.; Nakano, A.; Nakamura, M.; Fan, S.; Kawai, K.; Fujitsuka, M.; Yamana, K. ChemBioChem,2021, 22, 2729–2735.
DOI:https://doi.org/10.1002/cbic.202100309
A cyanine dye based supramolecular photosensitizer enabling visible-light-driven organic reaction in water
Shigemitsu, H.; Tamemoto, T.; Ohkubo, K.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. Chem. Commun.,2021, 57, 11217–11220.
DOI:https://doi.org/10.1039/D1CC04685C
Femtosecond time-resolved diffuse reflectance study on facet engineered charge‐carrier dynamics in Ag3PO4 for antibiotics photodegradation
He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T. Appl. Catal., B,2021, 281, 119479.
DOI:https://doi.org/10.1016/j.apcatb.2020.119479
COF-based photocatalyst for energy and environment applications
Li, X.; Kawai, K.; Fujitsuka, M.; Osakada, Y. Surf. Interfaces,2021, 25, 101249.
DOI:https://doi.org/10.1016/j.surfin.2021.101249
Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking
Kawai, K.; Fujitsuka, M.; Maruyama, A. Acc. Chem. Res.,2021, 54, 1001–1010.
DOI:https://doi.org/10.1021/acs.accounts.0c007549
Theoretical Study on Singlet Fission in Aromatic Diaza s-Indacene Dimers
Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M. J. Phys. Chem. A,2021, 125, 3257–3267.
DOI:https://doi.org/10.1021/acs.jpca.0c11598
Characterization of Benzo[a]naphtho[2,3-f]pentalene: Interrelation between Open-shell and Antiaromatic Characters Governed by Mode of the Quinoidal Subunit and Molecular Symmetry
Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M. Chem. Asian. J.,2021, 16, 1553–1561.
DOI:https://doi.org/10.1002/asia.202100398
Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models
Tonami, T.; Sugimori, R.; Sakai, R.; Tokuyama, K.; Miyamoto, H.; Nakano, M. Phys. Chem. Chem. Phys.,2021, 23, 11624–11634.
DOI:https://doi.org/10.1039/D1CP00880C
Theoretical Study on Singlet Fission Dynamics in Slip-Stack-Like Pentacene Ring-Shaped Aggregate Models
Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M. J. Phys. Chem. A,2021, 125, 5586–5600.
DOI:https://doi.org/10.1021/acs.jpca.1c03934
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M. Molecules,2021, 26, 6129.
DOI:https://doi.org/10.3390/molecules26206129
Long Carbon–Carbon Bonding beyond 2 Å in Tris(9-fluorenylidene)methane
Kubo, T.; Suga, Y.; Hashizume, D.; Suzuki, H.; Miyamoto, T.; Okamoto, H.; Kishi, R.; Nakano, M. J. Am. Chem. Soc.,2021, 143, 14360–14366.
DOI:https://doi.org/10.1021/jacs.1c07431
A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ring-Opening of Benzofuran-fused s-Indacenes and Dicyclopenta[b,g]naphthalenes
Barker, J. E.; Price, T. W.; Karas, L. J.; Kishi, R.; MacMillan, S. N.; Zakharov, L. N.; Gómez‐García, C. J.; Wu, J. I.; Nakano, M.; Haley, M. M. Angew. Chem. Int. Ed.,2021, 60, 22385–22392.
DOI:https://doi.org/10.1002/anie.202107855
Insertion of Diazo Esters into C−F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF3 Catalysis with C−F Bond Cleavage and Re-formation (cover picture)
Wang, F.; Nishimoto, Y.; Yasuda, M. J. Am. Chem. Soc.,2021, 143, 20616–20621.
DOI:https://doi.org/10.1021/jacs.1c10517
Strong Metal–Support Interaction in Pd/Ca2AlMnO5+δ: Catalytic NO Reduction over Mn-Doped CaO Shell
Hosokawa, S.; Oshino, Y.; Tanabe, T.; Koga, H.; Beppu, K.; Asakura, H.; Teramura, K.; Motohashi, T.; Okumura, M.; Tanaka, T. ACS Catal.,2021, 11, 7996–8003.
DOI:https://doi.org/10.1021/acscatal.1c01559
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
Era, I.; Kitagawa, Y.; Yasuda, N.; Kamimura, T.; Amamizu, N.; Sato, H.; Cho, K.; Okumura, M.; Nakano, M. Molecules,2021, 26, 6129.
DOI:https://doi.org/10.3390/molecules26206129
Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction (Cover)
Niwa, T.; Uetake, Y.; Isoda, M.; Takimoto, T.; Nakaoka, M.; Hashizume, D.; Sakurai, H.; Hosoya, T. Nature. Catal.,2021, 4, 6593–6597.
DOI:https://doi.org/10.1038/s41929-021-00719-6
1,2,3-Tri(9-anthryl)benzene: Photophysical Properties and Solid State Intermolecular Interactions of Radially Arranged, Congested Aromatic π-Planes (cover picture)
Nishiuchi, T.; Sotome, H.; Shimizu, K.; Miyasaka, H.; Kubo, T. Chem. Eur. J.,2022, 28, e202104245.
DOI:https://doi.org/10.1002/chem.202104245
Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium.
Kasama, K.; Kanomata, K.; Hinami, Y.; Mizuno, K.; Uetake, Y.; Amaya, T.; Sako, M.; Takizawa, S.; Sasai, H.; Akai, S. RSC Adv.,2021, 11, 35342–35350.
DOI:https://doi.org/10.1039/D1RA07723F
Synthesis of Benzoisoselenazolones via Rh(III)-catalyzed Direct Annulative Selenation Using Elemental Selenium.
Xu-Xu, Q.-F.; Nishii, Y.; Uetake, Y.; Sakurai, H.; Miura, M. Chem. Eur. J.,2021, 27, 17952–17959.
DOI:https://doi.org/10.1002/chem.202103485
Pyridine Ring Modification of Indane-1,3-dione Dimers for Control of their Crystal Structure.
Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H. Asian J. Org. Chem.,2021, 10, 2418.
DOI:https://doi.org/10.1002/ajoc.202100376
Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence.
Nishiuchi, T.; Sotome, H.; Fukuuchi, R.; Kamada, K.; Miyasaka, H.; Kubo, T. Aggregate,2021, 2, e126.
DOI:https://doi.org/10.1002/agt2.126
Synthesis and Characterization of 1-Hydroxy-4,5-arene-Fused Tropylium Derivatives
Kodama, T.; Kawashima, Y.; Uchida, K.; Deng, Z.; Tobisu, M. J. Org. Chem.,2021, 86, 13800–13807.
DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds
Sheng, M.; Fujita, S.; Yamaguchi, S.; Yamasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. JACS Au,2021, 1, 501–507.
DOI:https://doi.org/10.1021/jacsau.1c00125
A Nickel Phosphide Nanoalloy Catalyst for the C-3 Alkylation of Oxindoles with Alcohols
Sheng, M.; Fujita, S,; Imagawa, K.; Yamaguchi, S.; Yamasaki, J.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Sci. Rep.,2021, 11, 10673.
DOI:https://doi.org/10.1038/s41598-021-89561-18
A Copper Nitride Catalyst for the Efficient Hydroxylation of Aryl Halides under Ligand-free Conditions (Cover)
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Org. Biomol. Chem.,2021, 19, 6593–6597.
DOI:https://doi.org/10.1039/D1OB00768H
Efficient D-Xylose Hydrogenation to D-Xylitol over a Hydrotalcite-Supported Nickel Phosphide Nanoparticle Catalyst (Cover)
Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Eur. J. Inorg. Chem.,2021, 2021, 3327–3331.
DOI:https://doi.org/10.1002/ejic.202100432
Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines (Cover)
Sheng, M.; Yamaguchi, S.; Nakata, A.; Yamazoe, S.; Nakajima, K.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. ACS Sustainable Chemistry & Engineering,2021, 9, 11238–11246.
DOI:https://doi.org/10.1021/acssuschemeng.1c03667
Synthesis and Catalytic Activity of Atrane-type Hard and Soft Lewis Superacids with a Silyl, Germyl, or Stannyl Cationic Center
Tanaka, D.; Konishi, A.; Yasuda, M. Chem. Asian J.,2021, 16, 3118–3123.
DOI:https://doi.org/10.1002/asia.202100873
Synthesis and pyrolysis of fullerenol-stabilized Pt nanocolloids for unique approach to Pt-doped carbon
Cabello, M. K. E.; Uetake, Y.; Yao, Y.; Kuwabata, S.; Sakurai, H. Chem. Asian J.,2021, 16, 2280–2285.
DOI:https://doi.org/10.1002/asia.202100495
Ruthenium-Catalyzed Isomerization of ortho-Silylanilines to Their Para Isomers
Ishiga, W.; Ohta, M.; Kodama, T.; Tobisu, M. Org. Lett.,2021, 23, 6714–6718.
DOI:https://doi.org/10.1021/acs.orglett.1c022800
Nonfullerene acceptors for P3HT-based organic solar cells
Chatterjee, S.; Jinnai, S.; Ie, Y. J. Mater. Chem. A,2021, 9, 18857–18886.
DOI:https://doi.org/10.1039/D1TA03219D
Photoredox-Catalyzed C−F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position
Sugihara, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M. J. Am. Chem. Soc.,2021, 143, 9308–9313.
DOI:https://doi.org/10.1021/jacs.1c03760
Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
Kranthiraja, K,; Saeki, A. Adv. Funct. Mater.,2021, 31, 92011168.
DOI:https://doi.org/10.1002/adfm.202011168
Indium-catalyzed C–F Bond Transformation through Oxymetalation/β-fluorine Elimination to Access Fluorinated Isocoumarin
Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M. Chem. Eur. J.,2021, 27, 8288–8294.
DOI:https://doi.org/10.1002/chem.202100672
Homologation of Alkyl Acetates, Alkyl Ethers, Acetals and Ketals by Formal Insertion of Diazo Compounds into a Carbon-Carbon Bond
Wang, F.; Yi, J.; Nishimoto, Y.; Yasuda, M. Synthesis,2021, 53, 4004–4019.
DOI:https://doi.org/10.1055/a-1523-1551
Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution
Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S. Inorg. Chem.,2021, 60, 12634–12643.
DOI:https://doi.org/10.1021/acs.inorgchem.1c01279
A Quasi-stable Molybdenum Sub-oxide with Abundant Oxygen Vacancies that Promotes CO₂ Hydrogenation to Methanol
Kuwahara, Y.; Mihogi, T.; Hamahara, K.; Kusu, K.; Kobayashi, H.; Yamashita, H. CHem. Sci.,2021, 12, 9902–9915.
DOI:https://doi.org/10.1039/D1SC02550C
Plasmon-induced Catalytic CO₂ Hydrogenation by a Nano-sheet Pt/HxMoO3−y Hybrid with Abundant Surface Oxygen Vacancies
Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H. J. Mater. Chem. A,2021, 9, 13898–13907.
DOI:https://doi.org/10.1039/D1TA02277F
Modification of Ti-doped Hematite Photoanode with Quasi-molecular Cocatalyst: A Comparison of Improvement Mechanism Between Non-noble and Noble Metals
Wang, R.; Kuwahara, Y.; Mori, K.; Qian, X.; Zhao, Y.; Yamashita, H. ChemSusChem,2021, 14, 2180–2187.
DOI:https://doi.org/10.1002/cssc.202100451
Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion
Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc.,2021, 143, 12590–12599.
DOI:https://doi.org/10.1021/jacs.1c04622
Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO₂ Reduction
Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka. S.; Matsuda. R.; Kondo. M.; Masaoka, S. Small,2021, 17, 2006150.
DOI:https://doi.org/10.1002/smll.202006150
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO₂ hydrogenation
Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H. Nature Commun.,2021, 12, 3884.
DOI:https://doi.org/10.1038/s41467-021-24228-z
Pyridine Ring Modification of Indane-1,3-dione Dimers for Controlof their Crystal Structure
Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H. Asian J. Org. Chem.,2021, 10, 2690–2696.
DOI:https://doi.org/10.1002/ajoc.202100275
Two-step Conformational Control of a Dibenzo Diazacyclooctane Derivative by Stepwise Protonation
Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A. Asian J. Org. Chem.,2021, 10, 1377–1381.
DOI:https://doi.org/10.1002/ajoc.202100154
The Dawn of Sumanene Chemistry: My Personal History with π-Figuration
Sakurai, H. Bull. Chem. Soc. Jpn.,2021, 94, 1579–1587.
DOI:https://doi.org/10.1246/bcsj.20210046
Indium‐catalyzed C–F Bond Transformation through Oxymetalationβ‐fluorine Elimination to Access Fluorinated Isocoumarins
Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M. Chem. - Eur. J.,2021, 27, 8288–8294.
DOI:https://doi.org/10.1002/chem.202100672
Quick and Easy Method for Drastic Improvement of the Electrochemical CO₂ Reduction Activity an Iron Porphyrin Complex
Kosugi, K.; Kondo, M.; Masaoka, S. Angew. Chem. Int. Ed.,2021, 60, 22070–22074.
DOI:http://dx.doi.org/10.1002/anie.202110190
Fabrication of Function-Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes
Iwami, H.; Kondo, M.; Masaoka, S. ChemElectroChem,2021, 9, e202101363.
DOI:https://doi.org/10.1002/celc.202101363
Design of molecular water oxidation catalysts with earth-abundant metal ions
Kondo, M.; Tatewaki, H.; Masaoka, S. Chem. Soc. Rev.,2021, 50, 6790–6831.
DOI:https://doi.org/10.1039/D0CS01442G
Support-boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki,T.; Mitsudome, T. ACS Sustainable chemistry & Engineering,2021, 9, 6347–6354.
DOI:https://doi.org/10.1021/acssuschemeng.1c00447
Supported Cobalt Phosphide Nanoalloy Catalysts for Hydrogenation of Furfurals
Ichikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizuguchi, T.; Mitsudome, T. Synfacts,2021, 17, 0432.
DOI:https://doi.org/10.1055/s-0040-1706732
Deoxygenation of Sulfoxides on Nano-Nickel Phosphide/Titania Catalyst
Fujita, S.; Yamaguchi, S.; Yamazoe, S.; Yamasaki, S.; Mizugaki, T.; Mitsudome, T. Synfacts,2021, 17, 0193.
DOI:https://doi.org/10.1055/s-0040-1706651
Synthesis of 4,5-Benzotropone π Complexes of Iron, Rhodium, and Iridium and Their Potential Use in Catalytic Borrowing-Hydrogen Reactions
Kodama, T.; Kawashima, Y.; Deng, Z.; Tobisu, M. Inorg. Chem.,2021, 60, 4332–4336.
DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
Late-stage Derivatization of Buflavine by Nickel-catalyzed Direct Substitution of a Methoxy Group via C–O Bond Activation
Shimazumi, R.; Morita, K.; Yoshida, T.; Yasui, K.; Tobisu, M. Synthesis,2021, 53, 3037–3044. in press. (Special issue on Bond Activation in Honor of Prof. Shinji Murai)
DOI:https://doi.org/10.1055/a-1467-2494
Frontiers in water oxidation: Design, activity, and mechanism of molecular catalysts with earth-abundant metal ions
Kondo, M.; Tatewaki, H.; Masaoka, S. Chem. Soc. Rev., in press.
Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction
Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S. Small,2021, 17, 2006150.
DOI:https://doi.org/10.1002/smll.202006150
Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide
Nakao, S.; Nishimoto, Y.; Yasuda M. Chem. Lett.2021, 350, 538–541.
DOI:https://doi.org/10.1246/cl.200894
N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of N-Arylacrylamides via the Cleavage of Unactivated C(aryl)–N Bonds
Yasui, K.; Kamitani, M.; Fujimoto, H.; Tobisu, M. Org. Lett.2021, 23, 1572–1576.
DOI:https://pubs.acs.org/doi/10.1021/acs.orglett.0c04281
Volcano-Type Correlation between Particle Size and Catalytic Activity on Hydrodechlorination Catalyzed by AuPd Nanoalloy
Uetake, Y.; Mouri, S.; Haesuwannakij, S.; Okumura, K.; Sakurai H. Nanoscale Adv.2021, 3, 1496–1501.
DOI:https://doi.org/10.1039/D0NA00951B
Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
Kranthiraja, K.; Saeki, A. Adv. Funct. Mater.2021, 31, 2011168.
DOI:https://doi.org/10.1002/adfm.202011168
H2-Free Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
Yamaguchi, S.; Kondo, H.; Uesugi, K.; Sakoda, K.; Jitsukawa, K.; Mitsudome, T.; Mizugaki, T. ChemCatChem2021, 13, 1135–1139.
DOI:https://doi.org/10.1002/cctc.202001866
Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
Fujita, S.; Yamaguchi, S.; Yanasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Chem. Eur. J.2021, 27, 4439–4446.
DOI:https://doi.org/10.1002/chem.202005037
Air-stable and reusable nickel phosphide nanoalloy catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol
Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. Green Chem.2021, 23, 2010–2016.
DOI:https://doi.org/10.1039/D0GC03301D
Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S. Angew. Chem. Int. Ed.2021, 60, 5965–5969.
DOI:https://doi.org/10.1002/anie.202015174
Pd-Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO2 to Formate (表Cover)
Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. J. Phys. Chem. C 2021, 125, 3961–3971.
DOI:https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10962
(o‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
Suzuki, K. Nishimoto, Y.; Yasuda, M. Chem. –Eur. J.2021, 27, 3968–3973.
DOI:https://doi.org/10.1002/chem.202004692
2020年
Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification
Chutimasakul, T.; Uetake, Y.; Tantirungrotechai, J.; Asoh, T.; Uyama, H.; Sakurai H. ACS Omega2020, 5, 33206–33213.
DOI:https://pubs.acs.org/doi/abs/10.1021/acsomega.0c04894
Nickel-Catalyzed Decarbonylation of Acylsilanes
Ito, Y.; Nakatani, S.; Kodama, T.; Tobisu, M. J. Org. Chem.2020, 85, 7588–7594.
DOI:http://dx.doi.org/10.1021/acs.joc.0c00772