JP

PUBLICATION

2022

  1. Stacked Antiaromaticity in the π-Congested Space Between the Aromatic Rings in the Anthracene Dimer
    Nishiuchi, T.; Makihara, Y.; Sato, H.; Kubo, T.
    Chem. Phys. Org. Chem. 2022, ##, ####–####.
    DOI:https://onlinelibrary.wiley.com/doi/abs/10.1002/poc.4451
  2. Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
    Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P.
    J. Phys. Chem. A 2022, 126, 5283–5293.
    DOI:https://doi.org/10.1021/acs.jpca.2c02906
  3. Synthesis of Sumanene-fused Acenes
    Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H.
    Asian J. Org. Chem. 2022, ##, ####–####.
    DOI:https://doi.org/10.1002/ajoc.202200471
  4. Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
    Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Bull. Chem. Soc. Jpn. 2022, ##, ####–####.
    DOI:https://www.journal.csj.jp/doi/abs/10.1246/bcsj.20220257
  5. Synthetic Applications of C–O and C–E Bond Activation Reactions
    Tobisu, M.; Kodama, T.; Fujimoto, H.
    In Comprehensive Organometallic Chemistry IV, 2022, 12, pp347–420.
    DOI:https://www.sciencedirect.com/science/article/pii/B9780128202067000895
  6. Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
    Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H.
    J. Org. Chem., 2022, 87, 2508–2519.
    DOI:https://doi.org/10.1021/acs.joc.1c02416
  7. Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
    Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T.
    RADIOISOTOPES, 2022, 71, 171–177.
    DOI:https://doi.org/10.3769/radioisotopes.71.171
  8. Turning the Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
    Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H.
    Chem. Commun., 2022, 58, 8950–8953.
    DOI:https://doi.org/10.1039/D2CC02766F
  9. Nickel-catalyzed 1,4-aryl rearrangement of aryl N-benzylimidates via C–O and C–H bond cleavage (cover picture)
    Ogawa, S.; Tobisu, M.
    Chem. Commun., 2022, 58, 7909–7912.
    DOI:https://doi.org/10.1039/D2CC02355E
  10. Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate
    Shimazumi, R.; Tanimoto, R.; Kodama, T.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 11033–11043.
    DOI:https://doi.org/10.1021/jacs.2c04527
  11. Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
    Yamauchi, Y.: Hoshimoto, Y.: Kawakita, T.: Kinoshita, T.: Uetake, Y.: Sakurai, H.: Ogoshi, S.
    J. Am. Chem. Soc., 2022, 144, 8818–8826.
    DOI:https://doi.org/10.1021/jacs.2c02870
  12. Tuning the sumanene receptor structure towards the development of potentiometric sensors
    Kasprzak, A.: Tobolska, A.: Sakurai, H.: Wróblewski, W.
    Dalton Trans., 2022, 51, 468–472.
    DOI:https://doi.org/10.1021/acs.joc.1c02416
  13. Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
    Li, M.; JianYun Wu,J,Y.; Sambe, K.; Yakiyama, Y. ; Akutagawa, T.; Kajitani, T.; Fukushima, T. ; Matsudah K.; Sakurai, H.
    Mater. Chem. Front., 2022, 6, 1752–1758.
    DOI:https://doi.org/10.1039/D2QM00134A
  14. Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
    Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T.
    J. Am. Chem. Soc., 2022, 144, 7479–7488.
    DOI:https://doi.org/10.1021/jacs.2c02318
  15. Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use in Catalytic Nucleophilic Aromatic Substitution
    Ito, S.; Fujimoto, H.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 6714–6718.
    DOI:https://doi.org/10.1021/jacs.2c02579
  16. Nickel-Catalyzed Skeletal Transformation of Tropone Derivatives via C–C Bond Activation: Catalyst-Controlled Access to Diverse Ring Systems
    Kodama, T.; Saito, K.; Tobisu, M.
    Chem. Sci., 2022, 13, 4922–2929.
    DOI:https://doi.org/10.1039/D2SC01394K
  17. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
    Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202200286.
    DOI:https://doi.org/10.1002/chem.202200286
  18. Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
    Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A.
    Sens. Bio-Sens. Res., 2022, 35, 100470.
    DOI:https://doi.org/10.1016/j.sbsr.2021.100470
  19. Palladium-Catalyzed Silylacylation of Allenes Using Acylsilanes
    Inagaki, T.; Sakurai, S.; Yamanaka, M. Tobisu, M.
    Angew. Chem. Ind. Ed., 2022, 61, e202202387.
    DOI:https://doi.org/10.1002/anie.202202387
  20. Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst(front cover)
    Sakoda, K.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    JACS Au, 2022, 2, 665–672.
    DOI:https://doi.org/10.1021/jacsau.1c00535
  21. Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus(front cover)
    Ishikawa, H.; Yamaguchi, S.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    JACS Au, 2022, 2, 419–427.
    DOI:https://doi.org/10.1021/jacsau.1c00461
  22. Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
    Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M.; Ajavakom, A.
    Sens. Bio-Sens. Res., 2022, 35, 100470.
    DOI:https://doi.org/10.1016/j.sbsr.2021.100470
  23. Overlooked Factors Required for Electrolyte Solvents in Li–O₂ Batteries: Capabilities of Quenching 1O₂ and Forming Highly-Decomposable Li₂O₂
    Nishioka, K.; Tanaka, M.; Fujimoto, H.; Amaya, T.; Ogoshi, S.; Tobisu, M.; Nakanishi, S.
    Angew. Chem. Ind. Ed., 2022, 61, e202112769.
    DOI:https://doi.org/10.1002/anie.202112769
  24. Molecular and Spin Structures of a Through-Space Conjugated Triradical System
    Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T.
    Angew. Chem. Ind. Ed., 2022, 61, e202200688.
    DOI:https://doi.org/10.1002/anie.202200688
  25. Synthesis, Properties and Chemical Modification of a Persistent Triisopropylsilylethynyl Substituted Tri(9-anthryl)methyl Radical
    Nishiuchi, T.; Ishii, D; Aibara, S.; Sato, H.; Kubo, T.
    Chem. Commun., 2022, 58, 3306–3309.
    DOI:https://doi.org/10.1039/D2CC00548D
  26. A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
    Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T.
    Org. Biomol. Chem., 2022, 20, 1671–1679.
    DOI:https://doi.org/10.1039/D1OB02358F
  27. Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes
    Sakurai, S.; Inagaki, T.; Kodama, T.; Yamanaka, M. Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 1099–1105.
    DOI:https://pubs.acs.org/doi/10.1021/jacs.1c11497
  28. Nickel-Catalyzed Addition of C–C Bonds of Amides to Strained Alkenes: The 1,2-Carboaminocarbonylation Reaction
    Ito, Y.; Nakatani, S.; Shiraki, R.; Kodama, T.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 662–666.
    DOI:https://pubs.acs.org/doi/10.1021/jacs.1c09265

2021

  1. Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction (Cover)
    Niwa, T.; Uetake, Y.; Isoda, M.; Takimoto, T.; Nakaoka, M.; Hashizume, D.; Sakurai, H.; Hosoya, T.
    Nature. Catal., 2021, 4, 6593–6597.
    DOI:https://doi.org/10.1038/s41929-021-00719-6
  2. 1,2,3-Tri(9-anthryl)benzene: Photophysical Properties and Solid State Intermolecular Interactions of Radially Arranged, Congested Aromatic π-Planes (cover picture)
    Nishiuchi, T.; Sotome, H.; Shimizu, K.; Miyasaka, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202104245.
    DOI:https://doi.org/10.1002/chem.202104245
  3. Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium.
    Kasama, K.; Kanomata, K.; Hinami, Y.; Mizuno, K.; Uetake, Y.; Amaya, T.; Sako, M.; Takizawa, S.; Sasai, H.; Akai, S.
    RSC Adv., 2021, 11, 35342–35350.
    DOI:https://doi.org/10.1039/D1RA07723F
  4. Synthesis of Benzoisoselenazolones via Rh(III)-catalyzed Direct Annulative Selenation Using Elemental Selenium.
    Xu-Xu, Q.-F.; Nishii, Y.; Uetake, Y.; Sakurai, H.; Miura, M.
    Chem. Eur. J., 2021, 27, 17952–17959.
    DOI:https://doi.org/10.1002/chem.202103485
  5. Pyridine Ring Modification of Indane-1,3-dione Dimers for Control of their Crystal Structure.
    Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H.
    Asian J. Org. Chem., 2021, 10, 2418.
    DOI:https://doi.org/10.1002/ajoc.202100376
  6. Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence.
    Nishiuchi, T.; Sotome, H.; Fukuuchi, R.; Kamada, K.; Miyasaka, H.; Kubo, T.
    Aggregate, 2021, 2, e126.
    DOI:https://doi.org/10.1002/agt2.126
  7. Synthesis and Characterization of 1-Hydroxy-4,5-arene-Fused Tropylium Derivatives
    Kodama, T.; Kawashima, Y.; Uchida, K.; Deng, Z.; Tobisu, M.
    J. Org. Chem., 2021, 86, 13800–13807.
    DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
  8. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds
    M. Sheng, S.; Fujita, S.; Yamaguchi, J.; Yamasaki, K.; Nakajima, S.; Yamazoe, T.; Mizugaki, T.; Mitsudome, T.
    JACS Au, 2021, 1, 501–507.
    DOI:https://doi.org/10.1021/jacsau.1c00125
  9. A Nickel Phosphide Nanoalloy Catalyst for the C-3 Alkylation of Oxindoles with Alcohols
    Fujita, S,; Imagawa, K.; Yamaguchi, S.; Yamasaki, J.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    Sci. Rep., 2021, 11, 10673.
    DOI:https://doi.org/10.1038/s41598-021-89561-18
  10. A Copper Nitride Catalyst for the Efficient Hydroxylation of Aryl Halides under Ligand-free Conditions (Cover)
    H. Xu, S.; Yamaguchi, T.; Mitsudome, T.; Mizugaki, T.
    Org. Biomol. Chem., 2021, 19, 6593–6597.
    DOI:https://doi.org/10.1039/D1OB00768
  11. Efficient D-Xylose Hydrogenation to D-Xylitol over a Hydrotalcite-Supported Nickel Phosphide Nanoparticle Catalyst (Cover)
    Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    Eur. J. Inorg. Chem., 2021, 2021, 3327–3331.
    DOI:https://doi.org/10.1002/ejic.202100432
  12. Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines (Cover)
    M. Sheng, S.; Yamaguchi, A.; Nakata, S.; Yamazoe, K.; Nakajima, J.; Yamasaki, T.; Mizugaki, T.; Mitsudome, T.
    ACS Sustainable Chemistry & Engineering, 2021, 9, 11238–11246.
    DOI:https://doi.org/10.1021/acssuschemeng.1c03667
  13. Synthesis and Catalytic Activity of Atrane-type Hard and Soft Lewis Superacids with a Silyl, Germyl, or Stannyl Cationic Center
    Tanaka, D.; Konishi, A.; Yasuda, M.
    Chem. Asian J., 2021, 16, 3118–3123.
    DOI:https://doi.org/10.1002/asia.202100873
  14. Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion
    Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T.
    J. Am. Chem. Soc., 2021, 143, 12590–12599.
    DOI:https://doi.org/10.1021/jacs.1c04622
  15. Synthesis and pyrolysis of fullerenol-stabilized Pt nanocolloids for unique approach to Pt-doped carbon
    Cabello, M. K. E.; Uetake, Y.; Yao, Y.; Kuwabata, S.; Sakurai, H.
    Chem. Asian J., 2021, 16, 2280–2285.
    DOI:https://doi.org/10.1002/asia.202100495
  16. Ruthenium-Catalyzed Isomerization of ortho-Silylanilines to Their Para Isomers
    Ishiga, W.; Ohta, M.; Kodama, T.; Tobisu, M.
    Org. Lett., 2021, 23, 6714–6718.
    DOI:https://doi.org/10.1021/acs.orglett.1c022800
  17. Nonfullerene acceptors for P3HT-based organic solar cells
    Chatterjee, S.; Jinnai, S.; Ie, Y.
    J. Mater. Chem. A, 2021, 9, 18857–18886.
    DOI:https://doi.org/10.1039/D1TA03219D
  18. Photoredox-Catalyzed C−F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position
    Sugihara, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M.
    J. Am. Chem. Soc., 2021, 143, 9308–9313.
    DOI:https://doi.org/10.1021/jacs.1c03760
  19. Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
    Kranthiraja, K,; Saeki, A.
    Adv. Funct. Mater., 2021, 31, 92011168.
    DOI:https://doi.org/10.1002/adfm.202011168
  20. Indium-catalyzed C–F Bond Transformation through Oxymetalation/β-fluorine Elimination to Access Fluorinated Isocoumarin
    Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M.
    Chem. Eur. J., 2021, 27, 8288–8294.
    DOI:https://doi.org/10.1002/chem.202100672
  21. Homologation of Alkyl Acetates, Alkyl Ethers, Acetals and Ketals by Formal Insertion of Diazo Compounds into a Carbon-Carbon Bond
    Wang, F.; Yi, J.; Nishimoto, Y.; Yasuda, M.
    Synthesis, 2021, 53, 4004–4019.
    DOI:https://doi.org/10.1055/a-1523-1551
  22. Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution
    Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S.
    Inorg. Chem., 2021, 60, 12634–12643.
    DOI:https://doi.org/10.1021/acs.inorgchem.1c01279
  23. A Quasi-stable Molybdenum Sub-oxide with Abundant Oxygen Vacancies that Promotes CO₂ Hydrogenation to Methanol
    Kuwahara, Y.; Mihogi, T.; Hamahara, K.; Kusu, K.; Kobayashi, H.; Yamashita, H.
    CHem. Sci., 2021, 12, 9902–9915.
    DOI:https://doi.org/10.1039/D1SC02550C
  24. Plasmon-induced Catalytic CO₂ Hydrogenation by a Nano-sheet Pt/HxMoO3−y Hybrid with Abundant Surface Oxygen Vacancies
    Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H.
    J. Mater. Chem. A, 2021, 9, 13898–13907.
    DOI:https://doi.org/10.1039/D1TA02277F
  25. Modification of Ti-doped Hematite Photoanode with Quasi-molecular Cocatalyst: A Comparison of Improvement Mechanism Between Non-noble and Noble Metals
    Wang, R.; Kuwahara, Y.; Mori, K.; Qian, X.; Zhao, Y.; Yamashita, H.
    ChemSusChem, 2021, 14, 2180–2187.
    DOI:https://doi.org/10.1002/cssc.202100451
  26. Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion
    Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T.
    J. Am. Chem. Soc., 2021, 143, 2180–2187.
    DOI:https://doi.org/10.1021/jacs.1c04622
  27. Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO₂ Reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka. S.; Matsuda. R.; Kondo. M.; Masaoka, S.
    Small, 2021, 17, 2006150.
    DOI:https://doi.org/10.1002/smll.202006150
  28. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO₂ hydrogenation
    Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H.
    Nature Commun., 2021, 12, 3884.
    DOI:https://doi.org/10.1038/s41467-021-24228-z
  29. Pyridine Ring Modification of Indane-1,3-dione Dimers for Controlof their Crystal Structure
    Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H.
    Asian J. Org. Chem., 2021, 10, 2690–2696.
    DOI:https://doi.org/10.1002/ajoc.202100275
  30. Two-step Conformational Control of a Dibenzo Diazacyclooctane Derivative by Stepwise Protonation
    Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A.
    Asian J. Org. Chem., 2021, 10, 1377–1381.
    DOI:https://doi.org/10.1002/ajoc.202100154
  31. The Dawn of Sumanene Chemistry: My Personal History with π-Figuration
    Sakurai, H.
    Bull. Chem. Soc. Jpn., 2021, 94, 1579–1587.
    DOI:https://doi.org/10.1246/bcsj.20210046
  32. Indium‐catalyzed C–F Bond Transformation through Oxymetalationβ‐fluorine Elimination to Access Fluorinated Isocoumarins
    Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M.
    Chem. - Eur. J., 2021, 27, 8288–8294.
    DOI:https://doi.org/10.1002/chem.202100672
  33. Quick and Easy Method for Drastic Improvement of the Electrochemical CO₂ Reduction Activity an Iron Porphyrin Complex
    Kosugi, K.; Kondo, M.; Masaoka, S.
    Angew. Chem. Int. Ed., 2021, 60, 22070–22074.
    DOI:http://dx.doi.org/10.1002/anie.202110190
  34. Fabrication of Function-Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes
    Iwami, H.; Kondo, M.; Masaoka, S.
    ChemElectroChem, 2021, 9, e202101363.
    DOI:https://doi.org/10.1002/celc.202101363
  35. Design of molecular water oxidation catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., 2021, 50, 6790–6831.
    DOI:https://doi.org/10.1039/D0CS01442G
  36. Support-boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki,T.; Mitsudome, T.
    ACS Sustainable chemistry & Engineering, 2021, 9, 6347–6354.
    DOI:https://doi.org/10.1021/acssuschemeng.1c00447
  37. Supported Cobalt Phosphide Nanoalloy Catalysts for Hydrogenation of Furfurals
    Ichikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizuguchi, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0432.
    DOI:https://doi.org/10.1055/s-0040-1706732
  38. Deoxygenation of Sulfoxides on Nano-Nickel Phosphide/Titania Catalyst
    Fujita, S.; Yamaguchi, S.; Yamazoe, S.; Yamasaki, S.; Mizugaki, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0193.
    DOI:https://doi.org/10.1055/s-0040-1706651
  39. Synthesis of 4,5-Benzotropone π Complexes of Iron, Rhodium, and Iridium and Their Potential Use in Catalytic Borrowing-Hydrogen Reactions
    Kodama, T.; Kawashima, Y.; Deng, Z.; Tobisu, M.
    Inorg. Chem., 2021, 60, 4332–4336.
    DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
  40. Late-stage Derivatization of Buflavine by Nickel-catalyzed Direct Substitution of a Methoxy Group via C–O Bond Activation
    Shimazumi, R.; Morita, K.; Yoshida, T.; Yasui, K.; Tobisu, M.
    Synthesis, 2021, 53, 3037–3044. in press. (Special issue on Bond Activation in Honor of Prof. Shinji Murai)
    DOI:https://doi.org/10.1055/a-1467-2494
  41. Frontiers in water oxidation: Design, activity, and mechanism of molecular catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., in press.
  42. Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S.
    Small, 2021, 17, 2006150.
    DOI:https://doi.org/10.1002/smll.202006150
  43. Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide
    Nakao, S.; Nishimoto, Y.; Yasuda M.
    Chem. Lett. 2021, 350, 538–541.
    DOI:https://doi.org/10.1246/cl.200894
  44. N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of N-Arylacrylamides via the Cleavage of Unactivated C(aryl)–N Bonds
    Yasui, K.; Kamitani, M.; Fujimoto, H.; Tobisu, M.
    Org. Lett. 2021, 23, 1572–1576.
    DOI:https://pubs.acs.org/doi/10.1021/acs.orglett.0c04281
  45. Volcano-Type Correlation between Particle Size and Catalytic Activity on Hydrodechlorination Catalyzed by AuPd Nanoalloy
    Uetake, Y.; Mouri, S.; Haesuwannakij, S.; Okumura, K.; Sakurai H.
    Nanoscale Adv. 2021, 3, 1496–1501.
    DOI:https://doi.org/10.1039/D0NA00951B
  46. Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
    Kranthiraja, K.; Saeki, A.
    Adv. Funct. Mater. 2021, 31, 2011168.
    DOI:https://doi.org/10.1002/adfm.202011168
  47. H2-Free Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
    Yamaguchi, S.; Kondo, H.; Uesugi, K.; Sakoda, K.; Jitsukawa, K.; Mitsudome, T.; Mizugaki, T.
    ChemCatChem 2021, 13, 1135–1139.
    DOI:https://doi.org/10.1002/cctc.202001866
  48. Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
    Fujita, S.; Yamaguchi, S.; Yanasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    Chem. Eur. J. 2021, 27, 4439–4446.
    DOI:https://doi.org/10.1002/chem.202005037
  49. Air-stable and reusable nickel phosphide nanoalloy catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    Green Chem. 2021, 23, 2010–2016.
    DOI:https://doi.org/10.1039/D0GC03301D
  50. Stabilization of Charge-Transfer States in Pentacene Crystal and Its Role in Singlet Fission
    Nagami, T; Miyamoto, H.; Sakai, R.; Nakano, M.
    J. Phys. Chem. C 2021, 125, 2264–2275.
    DOI:https://doi.org/10.1021/acs.jpcc.0c10029
    Supplementary Cover
    https://pubs.acs.org/pb-assets/images/_journalCovers/jpccck/jpccck_v125i004-2.jpg?0.0397094469789554
  51. Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
    Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S.
    Angew. Chem. Int. Ed. 2021, 60, 5965–5969.
    DOI:https://doi.org/10.1002/anie.202015174
  52. Pd-Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO2 to Formate (表Cover)
    Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H.
    J. Phys. Chem. C 2021, 125, 3961-3971.
    DOI:https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10962
  53. (o‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
    Suzuki, K. Nishimoto, Y.; Yasuda, M.
    Chem. –Eur. J. 2021, 27, 3968–3973.
    DOI:https://doi.org/10.1002/chem.202004692

2020

  1. Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification
    Chutimasakul, T.; Uetake, Y.; Tantirungrotechai, J.; Asoh, T.; Uyama, H.; Sakurai H.
    ACS Omega 2020, 5, 33206–33213.
    DOI:https://pubs.acs.org/doi/abs/10.1021/acsomega.0c04894
  2. Nickel-Catalyzed Decarbonylation of Acylsilanes
    Ito, Y.; Nakatani, S.; Kodama, T.; Tobisu, M.
    J. Org. Chem. 2020, 85, 7588–7594.
    DOI:http://dx.doi.org/10.1021/acs.joc.0c00772