EN

研究業績

2025年

  1. Stereoselective Preparation and Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkenyl Sulfoximines
    Yasui, K.; Tomishima, Y.; Miura, T.; Yamazaki, K.; Hirano, K.
    Angew. Chem. Int. Ed., 2025, 64, e202420949. DOI:https://doi.org/https://doi.org/10.1002/anie.202420949
  2. Synthesis and Characterization of Zirconium-Oxide-Based Catalysts for the Oxygen Reduction Reaction via the Heat Treatment of Zirconium Polyacrylate in an Ammonia Atmosphere
    Ueno, A.; Seino, S.; Tamaki, Y.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T.
    J. Mater. Sci., 2025, 60, 2774–2785. DOI:https://doi.org/https://link.springer.com/article/10.1007/s10853-025-10620-3
  3. Synthesis, Chiroptical Properties, and Absolute Configuration Determination of Phenyl-4-pyridyl-2,5-dipyrimidinylmethane
    Matsumoto, K.; Tanaka, R.; Miki, K.; Konishi, A.; Kurata, H.; Kubo, T.; Pescitelli, G.; Matsuo, K.; Nehira, T.
    Asian J. Org. Chem., 2025, 14, e202400577. DOI:https://doi.org/https://doi.org/10.1002/ajoc.202400577
  4. Reductive amination of triglycerides to fatty amines over a titanium oxide-supported Pt–Mo catalyst
    Sakoda, K.; Furugaki, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Org. Biomol. Chem., 2025, 23, 2638–2644. DOI:https://doi.org/http://doi.org/10.1039/d4ob01843e
  5. Nickel-Catalyzed Synthesis of Silaindanes via Sequential C–H Activating 1,5-Nickel Migration and C–Si Activating 1,4-Nickel Migration
    Lee, D.; Fujii, I.; Shintani, R.
    ACS Catal., 2025, 15, 907–916. DOI:https://doi.org/https://doi.org/10.1021/acscatal.4c06910
  6. Synthesis and Characterization of an Air-Stable Tin(IV) β-Tetracyanoisophlorin Complex: Enhanced Antiaromaticity through Metal Complexation
    Sugimura, H.; Nakajima, K.; Yamashita, K.
    Asian J. Org. Chem., 2025, 14, e202400550. DOI:https://doi.org/https://doi.org/10.1002/ajoc.202400550
  7. Multihalogenated Zn Phthalocyanine as a Precursor for Porous Zn-N4-C Carbons toward Electrocatalytic Oxygen Reduction
    Sakamoto, K. Shiraishi, Y.; Kinoshita, K.; Yoshida, K.; Hiramatsu, W.; Hirai, T.
    Chem. Commun., 2025, 61, 1371–1374. DOI:https://doi.org/https://doi.org/10.1039/d4cc05813e
  8. Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction
    Hiramatsu, W.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Kawada, Y.; Hiraiwa, C.; Hirai, T.
    J. Am. Chem. Soc., 2025, 147, 1968–1979.
    DOI:https://doi.org/https://doi.org/10.1021/jacs.4c14804
  9. Stacked-ring aromaticity from the viewpoint of the effective number of π-electrons
    Sugimori, R; Okada, K; Kishi, R; Kitagawa, Y
    Chem. Sci, 2025, 16, 1707–1715.
    DOI:https://doi.org/https://doi.org/10.1039/D4SC07123A
  10. Protonation/deprotonation-driven switch for the redox stability of low potential [4Fe-4S] ferredoxin
    Wada, K; Kobayashi, K; Era, I; Isobe, Y; Kamimura, T; Marukawa, M; Nagae, T; Honjo, K; Kaseda, N; Motoyama, Y; Inoue, K; Sugishima, M; Kusaka, K; Yano, N; Fukuyama, K; Mishima, M; Kitagawa, Y; Unno, M
    eLife, 2025, 13, RP102506.
    DOI:https://doi.org/https://doi.org/10.7554/eLife.102506.2
  11. Synthesis of Polyamides Bearing Directing Groups and Their Catalytic Depolymerization
    Shiraki, R.; Hsu, Y.-I; Uyama, H.; Tobisu, H.
    Org. Lett., 2025, 27, 1453–1458.
    DOI:https://doi.org/https://doi.org/10.1021/acs.orglett.4c04829
  12. Capacitance enhancement by ion-laminated borophene-like layered materials
    Kambe, T.; Katakura, M.; Taya, H.; Nakamura, H.; Yamashita, T.; Yoshida, M.; Kuzume, A.; Akagami, K.; Imai, R.; Kawaguchi, J.; Masaoka, S.; Kubo, S.; Iino, H.; Shishido, A., Yamamoto, K.
    Nat. Commun., 2025, 16, 1073.
    DOI:https://doi.org/https://doi.org/10.1038/s41467-024-55307-6
  13. Effect of particle size on the oxygen reduction reaction activity of carbon‐supported niobium-oxide‐based nanoparticle catalysts
    Shinyoshi, N.; Seino, S.; Hasegawa, Y.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T.
    J. Mater. Sci., 2025, 60, 3275–3285.
    DOI:https://doi.org/https://link.springer.com/article/10.1007/s10853-025-10632-z
  14. Tailoring carbon-encapsulated gold nanoclusters via microchip laser ablation in polystyrene solution: controlling size, structure, and photoluminescent properties
    Hettiarachchi, B. S.; Yakiyama, Y.; Sakurai, H.
    RSC Appl. Interfaces, 2025, , .
    DOI:https://doi.org/https://pubs.rsc.org/en/content/articlelanding/2025/lf/d4lf00349g
  15. Monodentate σ-Accepting Boron-Based Ligands Bearing Square-Planar Ni(0) Centers
    Mondori, Y.; Yamauchi, Y.; Kawakita, T.; Ogoshi, S.; Uetake, Y.; Takeichi, Y.; Sakurai, H.; Hoshimoto, Y.
    J. Am. Chem. Soc., 2025, 147, 8326–8335.
    DOI:https://doi.org/https://pubs.acs.org/doi/10.1021/jacs.4c15892
  16. A New Generation of Sumanene-Based AIEgens for the Effective Recognition of Metal Cations in Solutions Containing 95 vol% of Water
    Cyniak, J. S.; Sakurai, H.; Kasprzak, A.
    Chem. – Eur. J., 2025, , .
    DOI:https://doi.org/https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202500705?af=R
  17. Cationic Nickel(II) Complexes Bearing a Phenalenyl-Based Tridentate Ligand
    Kodama, T.; Noguchi, H.; Tsurugi, H.; Tobisu, M.
    Chem. Lett., 2025, 54, upae251.
    DOI: https://doi.org/10.1093/chemle/upae251
  18. Synthesis and Characterization of Alkali Metal Salts Bearing a Phenalenyl-Based Tridentate Ligand
    Kodama, T.; Noguchi, H.; Tsurugi, H.; Tobisu, M.
    Chem. Lett., 2025, 54, upae246.
    DOI: https://doi.org/10.1093/chemle/upae246

2024年

  1. Aromatic halogenation using carborane catalyst
    Kona, C. N.; Oku, R.; Nakamura, S.; Miura, M.; Hirano, K.; Nishii, Y.
    Chem, 2024, 10, 402–413.
    DOI:https://doi.org/https://doi.org/10.1016/j.chempr.2023.10.006
  2. Direct synthesis of spirobifluorenes by formal dehydrative coupling of biaryls and fluorenones
    Kato, Y.; Nishimura, K.; YNishii, Y.; Hirano, K.
    Chem. Sci., 2024, 15, 2112–2117.
    DOI:https://doi.org/https://doi.org/10.1039/D3SC05977D
  3. Direct Synthesis of Benzoselenophene and Benzothiophene Derivatives from 1,1-Diarylethenes and Biaryls by Chalcogen Cation-Mediated Successive Bond Formation
    Iwamoto, H.; Kojima, Y.; Nishimura, K.; Yasui, K.; Hirano, K.
    Org. Lett., 2024, 26, 1006–1010.
    DOI:https://doi.org/https://doi.org/10.1021/acs.orglett.3c04033
  4. Tunable Mechanochromic Luminescence of Benzofuran-Fused Pyrazine: Effects of Alkyl Chain Length and Branching Pattern
    Nakamura, S.; Okubo, K.; Nishii, Y.; Hirano, K.; Tohnai, N.; Miura, M.
    J. Mater. Chem. C, 2024, 12, 2370–2378.
    DOI:https://doi.org/https://doi.org/10.1039/D3TC04748B
  5. Pd-catalysed C-H alkynylation of benzophospholes
    Tokura, Y.; Xu, S.; Yasui, K.; Nishii , Y.; Hirano, K.
    Chem. Commun., 2024, 60, 2792–2795.
    DOI:https://doi.org/https://doi.org/10.1039/D3CC05994D
  6. Asymmetric Synthesis of SCF3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes
    Kojima, Y.; Nishii, Y.; Hirano, K.
    Angew. Chem. Int. Ed., 2024, 63, e202403337.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202403337
  7. Facile Preparation of SeCF3-substituted Alkenes from Alkenyl Iodides and Selenium Powder
    Matsui, H.; Kojima, Y.; Hirano, K.
    Chem. Lett., 2024, 53, upae076.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae076
  8. Nickel-Catalyzed Electrophilic Amination of the Biphenylene C-C σ-Bond
    Inoue, T.; Nishino, S.; Yasui, K.; Hirano, K.
    Org. Lett., 2024, 26, 4268–4273.
    DOI:https://doi.org/https://doi.org/10.1021/acs.orglett.4c01226
  9. Controlled Photoinduced Electron Transfer via Triplet in Polymer Matrix Using Electrostatic Interactions
    Cao, Y.; Sotome, H.; Kobayashi, Y.; Ito, S.; Yamaguchi, H.
    J. Photochem. Photobiol. A, 2024, 452, 115593.
    DOI:https://doi.org/https://doi.org/10.1016/j.jphotochem.2024.115593
  10. Control of sulfur number in sulfur-containing compounds: The effect of base type, equivalent of the base, and reaction solvent in synthesizing linear sulfur
    Nishimura, R.; Kobayashi, Y.; Kamioka, R.; Hashimoto, S.; Yamaguchi, H
    Chem. Lett., 2024, 53, upae105.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae105
  11. Amplification sensing manipulated by a sumanene-based supramolecular polymer as a dynamic allosteric effector
    Mizuno, H.; Nakazawa, H.; Miyagawa, A.; Yakiyama, Y.; Sakurai, H.; Fukuhara, G.
    Sci. Rep., 2024, 14, 12534.
    DOI:https://doi.org/https://doi.org/10.1038/s41598-024-63304-4
  12. Dehydrogenative Oxidation of Hydrosilanes Using Gold Nanoparticle Deposited on Citric Acid-Modified Fibrillated Cellulose: Unveiling the Effect of Molecular Oxygen
    Suwattananuruk, B.; Uetake, Y.; Ichikawa, R.; Toyoshima, R.; Kondoh, H.; Sakurai, H.
    Nanoscale, 2024, 16, 12474–12481.
    DOI:https://doi.org/https://doi.org/10.1039/D4NR01184H
  13. Sumanene–carbazole conjugate with push–pull structure and its chemoreceptor application
    Ufnal, D.; Cyniak, J. S.; Krzyżanowski, M.; Durka, K.; Sakurai, H.; Kasprzak, A.
    Org. Biomol. Chem., 2024, 22, 5117–5126.
    DOI:https://doi.org/https://doi.org/10.1039/D4OB00539B
  14. Strain-induced carbon-carbon bond cleavage of bowl-shaped sumanenone
    Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Sakurai, H.
    Chem. Commun., 2024, 60, 3982–3985.
    DOI:https://doi.org/https://doi.org/10.1039/d4cc00008k
  15. Reversible Modulation of the Local Environment around Metal Centers Bearing Multifunctional Carbenes
    Yamauchi, Y.; Ogoshi, S.; Uetake, Y.; Hoshimoto, Y.
    Chem. Lett., 2024, 53, upae042.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae042
  16. Biased Bowl-Direction of Monofluorosumanene in the Solid State
    Yakiyama, Y.; Li, M.; Zhou, D.; Abe, T.; Sato, C.; Sambe, K.; Akutagawa, T.; Matsumura, T.; Matubayasi, N.; Sakurai, H.
    J. Am. Chem. Soc., 2024, 146, 5224–5231.
    DOI:https://doi.org/https://doi.org/10.1021/jacs.3c11311
  17. Expanding the library of sumanene molecular receptors for caesium-selective potentiometric sensors
    Ażgin, J.; Wesoły, M.; Durka, K.; Sakurai, H.; Wróblewski, W.; Kasprzak, A.
    Dalton Trans., 2024, 53, 2964–2972.
    DOI:https://doi.org/https://doi.org/10.1039/D3DT03885H
  18. Mechanistic Study in Gold Nanoparticle Synthesis through Microchip Laser Ablation in Organic Solvents
    Hettiarachchi, B. S.; Takaoka, Y.; Uetake, Y.; Yakiyama, Y.; Yoshikawa, H. Y.; Maruyama, M.; Sakurai, H.
    Metals, 2024, 14, 155.
    DOI:https://doi.org/https://doi.org/10.3390/met14020155
  19. Uncovering gold nanoparticle synthesis using a microchip laser system through pulsed laser ablation in aqueous solution
    Hettiarachchi, B. S.; Takaoka, Y.; Uetake, Y.; Yakiyama, Y.; Lim, H. H.; Taira, T.; Maruyama, M.; Mori, Y.; Yoshikawa, H. Y.; Sakurai, H.
    Ind. Chem. Mater., 2024, 2, 340–347.
    DOI:https://doi.org/https://doi.org/10.1039/D3IM00090G
  20. Oxidation-derived anticancer potential of sumanene-ferrocene conjugates
    Kasprzak, A.; Zuchowska, A.; Romanczuk, P.; Kowalczyk, A.; Grudzinski, I. P.; Malkowska, A.; Nowicka, A. M.; Sakurai, H.
    Dalton Trans., 2024, 53, 56–64.
    DOI:https://doi.org/https://doi.org/10.1039/d3dt03810f
  21. Fast, efficient, narrowband room-temperature phosphorescence from metal-free 1,2-diketones: rational design and the mechanism
    Tani, Y.; Miyata, K.; Ou, E.; Oshima, Y.; Komura, M.; Terasaki, M.; Kimura, S.; Ehara, T.; Kubo, K.; Onda, K.; Ogawa, T.
    Chem. Sci., 2024, 15, 10784–10793.
    DOI:https://doi.org/https://doi.org/10.1039/D4SC02841D
  22. True location of insulating byproducts in discharge deposits in Li–O2 batteries
    Nishioka, K.; Weintraut, T.; Schröder, S.; Henss, A.; Nakanishi,S.
    ACS Appl. Energy Mater., 2024, 8, 3443–3451.
    DOI:https://doi.org/https://doi.org/10.1021/acsaem.4c00202
  23. Quantitative assessment for the disproportionation reaction of HCHO formed during CO and CO2 electrolysis
    Nishijima, H.; Inoue, A.; Harada, H.; Kamiya, K.; Nakanishi, S.
    Electrochemistry, 2024, 5, 57005.
    DOI:https://doi.org/https://doi.org/10.5796/electrochemistry.24-00041
  24. Developing a design guideline of boronic acid derivatives to scavenge targeted sugars in the formose reaction products using DFT-based machine learning
    Ishihara, N.; Chikatani, G.; Nishijima, H.; Tabata, H.; Hase, Y.; Mukouyama, Y.; Nakanishi, S.; Mukaida, S.
    Chem. Lett., 2024, 6, upae087.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae087
  25. Quantitative analysis and manipulation of alkali metal cations at the cathode surface in membrane electrode assembly electrolyzers for CO2 reduction reactions
    Kato, S.; Ito, S.; Nakahata, S.; Kurihara, R.; Harada, T.; Nakanishi, S.; Kamiya, K.
    ChemSucChem, 2024, , e202401013.
    DOI:https://doi.org/https://doi.org/10.1002/cssc.202401013
  26. Electrochemical monitoring of metabolic activity of methane/methanol conversing methylococcus capsulatus (bath) cells based on extracellular electron transfer
    Sugimoto, S.; Hori, K.; Ishikawa,M.; Ito, H.; Kamachi, T.; Tanaka, K.; Chen, Y.Y.; Nakanishi, S.
    Electrochemistry, 2024, 2, 22007.
    DOI:https://doi.org/https://doi.org/10.5796/electrochemistry.23-68120
  27. Microbial biomanufacturing using chemically synthesized non-natural sugars as the substrate
    Tabata, H.; Nishijima, H.; Yamada, Y.; Miyake, R.; Yamamoto, K.; Kato, S.; Nakanishi, S.
    ChemBioChem, 2024, 2, e202300760.
    DOI:https://doi.org/https://doi.org/10.1002/cbic.202300760
  28. CO hydrogenation promoted by oxygen atoms adsorbed onto Cu(100)
    Nagita, K.; Kamiya, K.; Nakanishi, S.; Hamamoto, Y.; Morikawa, Y.
    J. Phys. Chem. C, 2024, 11, 4607–4615.
    DOI:https://doi.org/https://doi.org/10.1021/acs.jpcc.4c00666
  29. C−C coupling in CO2 electroreduction on single Cu-modified covalent triazine frameworks: A static and dynamic density functional theory study
    Ohashi, K.; Nagita, K.; Yamamoto, H.; Nakanishi, S.; Kamiya, K.
    ChemElectroChem, 2024, 6, e202300693.
    DOI:https://doi.org/https://doi.org/10.1002/celc.202300693
  30. Light wavelength as a contributory factor of environmental fitness in the cyanobacterial circadian clock
    Kawamoto, N.; Nakanishi, S.; Shimakawa, G.
    Plant and Cell Physiology, 2024, 5, 798–808.
    DOI:https://doi.org/https://doi.org/10.1093/pcp/pcae022
  31. Cu(II) detection by a fluorometric probe based on thiazoline-amidoquinoline derivative and its application to water and food samples
    Paisuwan, W.; Srithadindang, K.; Kodama, T.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A.
    Spectrochim. Acta - A: Mol. Biomol. Spectrosc., 2024, 322, 124706.
    DOI:https://doi.org/https://doi.org/10.1016/j.saa.2024.124706
  32. Dehydrosilylation of Alcohols Using Gold Nanoparticles Deposited on Citric Acid-modified Fibrillated Cellulose
    Suwattananuruk, B.; Uetake, Y.; Sakurai, H.
    Synlett, 2024, 35, 2417–2422.
    DOI:https://doi.org/https://doi.org/10.1055/a-2379-9191
  33. Controlled degradation of chemically stable poly(aryl ethers) via directing group-assisted catalysis
    Ogawa, S.; Morita, H.; Hsu, Y.-I; Uyama, H.; Tobisu, M.
    Chem. Sci., 2024, 15, 17556–17561.
    DOI:https://doi.org/https://doi.org/10.1039/D4SC04147JJ
  34. Carrier Doping in Semiconducting Carbon Nanotubes with Fluorosumanenes
    Uchiyama, H.; Nakano, T. Yakiyama, Y.; Sakurai, H.; Gao, Y.; Maruyama, M.; Okada, S.; Kataura, H.; Ohno, Y.
    J. Phys. Chem. C, 2024, 128, 17668–17673.
    DOI:https://doi.org/https://doi.org/10.1021/acs.jpcc.4c04543
  35. Exceptionally Short Tetracoordinated Carbon–Halogen Bonds in Hexafluorodihalocubanes
    Sugiyama, M.; Uetake, Y.; Miyagi, N.; Yoshida, M.; Nozaki, K.; Okazoe, T.; Akiyama, M.
    J. Am. Chem. Soc., 2024, 146, 30686–30697.
    DOI:https://doi.org/https://doi.org/10.1021/jacs.4c12732
  36. Complexation by γ-cyclodextrin as a way of improving anticancer potential of sumanene
    Kasprzak, A.; Żuchowska, A.; Sakurai, H.
    Sci. Rep., 2024, 14, 27158.
    DOI:https://doi.org/https://doi.org/10.1038/s41598-024-78110-1
  37. Synthesis and Characterization of Titanium Oxynitride Catalyst via Direct Ammonia Nitridation of Titanium Polyacrylate for Oxygen Reduction Reaction
    Tamaki, Y.; Seino, S.; Shinyoshi, N.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T.
    J. Mater. Sci.: Mater. Eng., 2024, 19, 40.
    DOI:https://doi.org/https://doi.org/10.1186/s40712-024-00189-1
  38. Red-light Emitting Orthogonally Trireactive GoldNanoclusters for the Synthesis of MultifunctionalizedNanomaterials
    Watanabe, K.; Uetake, Y.; Hata, M.; Kuwano, A.; Yamamoto, R.; Yamamoto, Y.; Kodera, M.; Kitagishi, H.; Niwa, T.; Hosoya, T.
    Small, 2024, , 2408747.
    DOI:https://doi.org/https://doi.org/10.1002/smll.202408747
  39. Generation of Nickel Siloxycarbene Complexes from Acylsilanes for the Catalytic Synthesis of Silyl Enol Ethers
    Matsuura, A. ; Ito, Y.; Inagaki, T.; Kodama, T.; Tobisu, M.
    ACS Catal., 2024, 14, 18216–18222.
    DOI:https://doi.org/https://pubs.acs.org/doi/10.1021/acscatal.4c06272
  40. A Nickel Metalloradical Bearing a Phenalenyl-Based Tridentate Ligand
    Noguchi, H.; Kodama, T.; Kikkawa, S.; Yamazoe, S.; Tobisu, M.
    Chem. Lett., 2024, 53, upae236.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae236
  41. Synthesis of highly condensed phospholes by Lewis acid-assisted dehydrogenative Mallory reaction under visible light irradiation
    Kamiyoshi, I.; Kojima, Y.; Xu, S.; Yasui, K.; Nishii, Y.; Hirano, K.
    Chem. Sci., 2024, 15, 20413–20420.
    DOI:https://doi.org/https://doi.org/10.1039/D4SC05657D
  42. Pd-Catalysed synthesis of carborane sulfides from carborane thiols
    Minematsu, N.; Nishii, Y.; Hirano, K.
    Chem. Commun., 2024, 60, 13594–13597.
    DOI:https://doi.org/https://doi.org/10.1039/D4CC03934C
  43. Organic Mechanochromic Luminescent Materials with Self-Recovering Characters
    Nakamura, S.; Hirano, K.; Tohnai, N.
    ChemPlusChem, 2024, , e202400437.
    DOI:https://doi.org/https://doi.org/10.1002/cplu.202400437
  44. Organophotoredox-Catalyzed C–H Functionalizations of Benzophospholes
    Tokura, Y.; Xu, S.; Kamiyoshi, I.; Hirano, K.
    Org. Lett., 2024, 26, 4268–4237.
    DOI:https://doi.org/https://doi.org/10.1021/acs.orglett.4c01535
  45. Trivalent Metal Chloride Doping for Interfacial Passivation and Enhanced Charge Transfer in Wide Bandgap Perovskite Solar Cells
    Park, Y.; Nishikubo, R.; Pylnev, M.; Shimomura, R.; Saeki, A.
    ACS Appl. Energy Mater., 2024, 7, 11818–11826.
    DOI:https://doi.org/https://doi.org/10.1021/acsaem.4c02157
  46. Performance Boost by Dark Electro Treatment in MACl-Added FAPbI3 Perovskite Solar Cells
    Pylnev, M.; Nishikubo, R.; Ishiwari, F.; Wakamiya, A.; Saeki, A.
    Adv. Opt. Mater., 2024, 12, 2401902.
    DOI:https://doi.org/https://doi.org/10.1002/adom.202401902
  47. Molecular models of PM6 for non-fullerene acceptor organic solar cells: How DAD and ADA structures impact charge separation and charge recombination
    Pananusorn, P.; Sotome, H.; Uratani, H.; Ishiwari, F.; Phomphrai, K.; Saeki, A.
    J. Chem. Phys., 2024, 161, 184710.
    DOI:https://doi.org/https://doi.org/10.1063/5.0227785
  48. Chiral bifacial indacenodithiophene-based π-conjugated polymers with chirality-induced spin selectivity
    Li, S.; Ishiwari, F.; Zorn, S.; Murotani, K.; Pylnev, M.; Taniguchi, K.; Saeki, A.
    Chem. Commun., 2024, 60, 10870–10873.
    DOI:https://doi.org/https://doi.org/10.1039/d4cc03292f
  49. Evolving bifacial molecule strategy for surface passivation of lead halide perovskite solar cells
    N. Minoi, F. Ishiwari, T. Omine, K. Murotani, R. Nishikubo, A. Saeki
    Sustainable Energy Fuels, 2024, 8, 4453–4460.
    DOI:https://doi.org/https://doi.org/10.1039/d4se01096e
  50. Sequential Deposition of Diluted Aqueous SnO2 Dispersion for Perovskite Solar Cells
    Pylnev, M.; Nishikubo, R.; Ishiwari, F.; Wakamiya, A.; Saeki, A.
    Solar RRL, 2024, 8, 2400415.
    DOI:https://doi.org/https://doi.org/10.1002/solr.202400415
  51. Combined Charge Extraction by Linearly Increasing Voltage and Time-Resolved Microwave Conductivity to Reveal the Dynamic Charge Carrier Mobilities in Thin-Film Organic Solar Cells
    Li, S.; Nishikubo, R.; Saeki, A.
    ACS Omega, 2024, 9, 26951–26962.
    DOI:https://doi.org/https://doi.org/10.1021/acsomega.3c09977
  52. Wavelength-Recognizable SbSI:Sb2S3 Photovoltaic Devices: Elucidation of the Mechanism and Modulation of their Characteristics
    Kobayashi, T.; Nishikubo, R.; Chen, Y.; Marumoto, K.; Saeki, A.
    Adv. Funct. Mater., 2024, 34, 2311794.
    DOI:https://doi.org/https://doi.org/10.1002/adfm.202311794
  53. Triammonium Molecular Tripods as Organic Building Blocks for Hybrid Perovskite Solar Cells
    Fukui, T.; Hofuku, K.; Kosaka, A.; Minoi, N.; Nishikubo, R.; Ishiwari, F.; Sato, H.; Saeki, A.; Fukushima, T.
    Small Struct., 2024, 5, 2300411.
    DOI:https://doi.org/https://doi.org/10.1002/sstr.202300411
  54. On‐Surface Synthesis of Silole and Disila‐Cyclooctene Derivatives
    Sun, K.; Kurki, L.; Silveira, O. J.; Nishiuchi, T.; Kubo, T.; Foster, A. S.; Kawai, S.
    Angew. Chem. Int. Ed., 2024, 63, e202401027.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202401027
  55. Long carbon–carbon bonds and beyond
    Kubo, T.
    Chem. Phys. Rev., 2024, 5, 31302.
    DOI:https://doi.org/https://doi.org/10.1063/5.0214406
  56. Synthesis and reactivity of the di(9-anthryl)methyl radical
    Nishiuchi, T.; Takahashi, K.; Makihara, Y.; Kubo, T.
    Beilstein J. Org. Chem., 2024, 20, 2254–2260.
    DOI:https://doi.org/https://doi.org/10.3762/bjoc.20.193
  57. Highly Active and Sulfur-tolerant Ruthenium Phosphide Catalyst for Efficient Reductive Amination of Carbonyl Compounds
    Ishikawa, H.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    ACS Catal., 2024, 14, 4501–4509.
    DOI:https://doi.org/http://doi.org/10.1021/acscatal.3c06179
  58. Reductive amination of carboxylic acids under H2 using a heterogeneous Pt–Mo catalyst
    Sakoda, K.; Yamaguchi, S.; Honjo, K.; Kitagawa, Y.; Mitsudome, T.; Mizugaki, T.
    Green Chem., 2024, 26, 2571–2576.
    DOI:https://doi.org/http://doi.org/10.1039/D3GC02155F
  59. Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Synlett, 2024, 35, 1296–1300.
    DOI:https://doi.org/http://doi.org/10.1055/a-2191-5906
  60. Nickel Carbide Nanoparticle Catalyst for Selective Hydrogenation of Nitriles to Primary Amines
    Yamaguchi, S.; Kiyohira, D.; Tada, K.; Kawakami, T.; Miura, A.; Mitsudome, T.; Mizugaki, T.
    Chem Eur J., 2024, 1, e202303573 (1 of 7)..
    DOI:https://doi.org/http://doi.org/10.1002/chem.202303573
  61. Air-Stable and Highly Active Transition Metal Phosphide Catalysts for Reductive Molecular Transformations
    Mitsudome, T.
    Catalysts, 2024, 14, 193(1-19).
    DOI:https://doi.org/https://doi.org/10.3390/catal14030193
  62. Synthesis of Fused Oligosiloles by Rhodium-catalyzed Stitching Reaction and Subsequent Remote Conjugate Dehydration
    Morita, M.; Shintani, R.
    Chem. Lett., 2024, 53, upae068.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae068
  63. Synthesis of (1-silyl)allylboronates by KOtBu-catalyzed ring-opening gem-silylborylation of cyclopropenes
    Fujii, I.; Hirata, H.; Moniwa, H.; Shintani, R.
    Chem. Commun., 2024, 60, 6921–6924.
    DOI:https://doi.org/https://doi.org/10.1039/D4CC01336K
  64. Radical Stitching Polymerization and Its Alternating Copolymerization
    Hamada, Y.; Togawa, S.; Shintani, R.
    J. Am. Chem. Soc., 2024, 146, 19310–19316.
    DOI:https://doi.org/https://doi.org/10.1021/jacs.4c05094
  65. Absorption of water molecules on the surface of stereocomplex-crystal spherulites of polylactides: An in-situ FT-IR spectroscopy investigation
    Kokuzawa, T.; Hirabayashi, S.; Ikemoto, Y.; Park, J.; Ikura, R.; Takashima, Y.; Higuchi, Y.; Matsuba, G.
    Polymer, 2024, 298, 126922–126922.
    DOI:https://doi.org/https://doi.org/10.1016/j.polymer.2024.126922
  66. Improvement in Cohesive Properties of Adhesion Systems Using Movable Cross-Linked Materials with Stress Relaxation Properties
    Qian, Y.; Ikura, R.; Kawai, Y.; PARK, J.; Yamaoka, K.; Takashima, Y.
    ACS Applied Materials & Interfaces, 2024, 16, 3935–3943.
    DOI:https://doi.org/https://doi.org/10.1021/acsami.3c13342
  67. Recyclable Tough Adhesive Sheets with Movable Cross-Links for Sustainable Use
    Kosaba, S.; Ikura, R.; Yamaoka, K.; Arai, T.; Takashima, Y.
    ACS Applied Materials & Interfaces, 2024, 16, 25393–25403.
    DOI:https://doi.org/https://doi.org/10.1021/acsami.4c03806
  68. Multiscale characterization and design of cellulose composites based on polymers with movable cross-links
    Fujiwara, Y.; Luo, C.; Ikura, R.; Takashima, Y.; Uetsuji, Y.
    Polymer, 2024, 291, 126603–126603.
    DOI:https://doi.org/https://doi.org/10.1016/j.polymer.2023.126603
  69. Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes
    Yamaoka, K.; Ikura, R.; Osaki, M.; Shirakawa, H.; Takahashi, K.; Takahashi, H.; Ohashi, Y.; Takashima, Y.
    Polym. J, 2024, 56, 1031–1039.
    DOI:https://doi.org/https://doi.org/10.1038/s41428-024-00932-7
  70. Relation between the Water Content and Mechanical Properties of Hydrogels with Movable Cross-Links
    Nishida, K.; Ikura, R.; Yamaoka, K.; Urakawa, O.; Konishi, T.; Inoue, T.; Matsuba, G.; Tanaka, M.; Takashima, Y.
    Macromolecules, 2024, 57, 7745–7754.
    DOI:https://doi.org/https://doi.org/10.1021/acs.macromol.4c00732
  71. Reinforcement and Controlling the Stability of Poly(ε-caprolactone)-Based Polymeric Materials via Reversible and Movable Cross-Links Employing Cyclic Polyphenylene Sulfide
    Ding, Y.; Ikura, R.; Yamaoka, K.; Nishida, K.; Sugawara, A.; Uyama, H.; Nara, S.; Takashima, Y.
    ACS Macro Letters, 2024, 13, 1265–1271.
    DOI:https://doi.org/https://doi.org/10.1021/acsmacrolett.4c00495
  72. Mechanical properties and molecular adhesion exhibited by inorganic–organic composite elastomers
    Yamashita, N.; Ikura, R.; Yamaoka, K.; Kato, N.; Kamei, M.; Ogura, K.; Igarashi, M.; Nakagawa, H.; Takashima, Y.
    Polymer Chemistry, 2024, 15, 4196–4203.
    DOI:https://doi.org/DOIhttps://doi.org/10.1039/D4PY00879K
  73. Exploring enzymatic degradation, reinforcement, recycling, and upcycling of poly(ester)s-poly(urethane) with movable crosslinks
    Liu, J.; Ikura, R.; Yamaoka, K.; Sugawara, A.; Takahashi, Yuya.; Kure, B.; Takenaka, N.; Park, Junsu.; Uyama, H.; Takashima, Y.
    Chem, 2025, , 102327–102327.
    DOI:https://doi.org/https://doi.org/10.1016/j.chempr.2024.09.026
  74. Heterogeneous Tandem Catalysis Strategy for Additive-free CO2 Hydrogenation into Formic Acid in Water: Crystal Plane Effect of Co3O4 Cocatalyst
    Mori, K; Shinogi, J; Shimada, Y; Yamashita, H
    ACS Catal., 2024, 14, 18861–18871.
    DOI:https://doi.org/https://doi.org/10.1021/acscatal.4c05484
  75. Entropy-Stabilized Isolated Active Pd Species within a High-Entropy Fluorite Oxide Matrix for CO2 Hydrogenation to Formic Acid
    Mori, K; Shimada, Y; Yoshida, H; Hinuma, Y; Yamashita, H
    ACS Applied Nano Materials, 2024, 7, 28649–28658.
    DOI:https://doi.org/https://doi.org/10.1021/acsanm.4c05908
  76. Heteroatom Doping Enables Hydrogen Spillover via H+/e− Diffusion Pathways on a Non-reducible Metal Oxide
    Shun, K; Mori, K; Kidawara, T; Ichikawa, S; Yamashita, H
    Nature Communications, 2024, 15, 6403.
    DOI:https://doi.org/https://doi.org/10.1038/s41467-024-50217-z
  77. Two-phase reaction system for efficient photocatalytic production of hydrogen peroxide
    Zhao, Y; Kondo, Y; Kuwahara, Y; Mori, K: Yamashita, H.
    Applied Catalysis B: Environment and Energy, 2024, 351, 123945.
    DOI:https://doi.org/https://doi.org/10.1016/j.apcatb.2024.123945
  78. Specific Hydrogen Spillover Pathways Generated on Graphene Oxide Enabling the Formation of Non-Equilibrium Alloy Nanoparticle
    Shun, K; Matsukawa, S; Ichikawa, S; Yamashita, H
    Small, 2024, 20, 2306765.
    DOI:https://doi.org/https://doi.org/10.1002/smll.202306765
  79. Thermal Stability of High-Entropy Alloy Nanoparticles Evaluated by In Situ TEM Observations
    Hashimoto, N.; Mori, K.; Yoshida, H.; Kamiuchi, N.; Kitaura, R.; Hirasawa, R.; Yamashita, H.
    Nano Letters, 2024, 24, 7063–70638.
    DOI:https://doi.org/https://doi.org/10.1021/acs.nanolett.4c01625
  80. Advances in Metal 3D Printing Technology for Tailored Self-Catalytic Reactor Design
    Kim, H.-J.; Mori, K.; Nakano, T.; Yamashita, H
    ChemCatChem, 2024, 16, e202301380.
    DOI:https://doi.org/https://doi.org/10.1002/cctc.202301380
  81. Effect of oxygen vacancies and crystal phases in defective Pt/ZrO2-x on its photocatalytic activity toward hydrogen production
    Yamazaki, Y.; Doshita, N.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H.
    Catalysis Science & Technology, 2024, 14, 397–404.
    DOI:https://doi.org/https://doi.org/10.1039/D3CY01470C
  82. Nonfullerene Acceptors Bearing Spiro-Substituted Bithiophene Units in Organic Solar Cells: Tuning the Frontier Molecular Orbital Distribution to Reduce Exciton Binding Energy
    Wang, K.; Jinnai, S.; Urakami, T.; Sato, H.; Higashi, M.; Tsujimura, S.; Kobori, Y.; Adachi, R.; Yamakata, A.; Ie, Y.
    Angew. Chem. Int. Ed., 2024, 63, e202412691.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202412691
  83. A Dibenzo[g,p]chrysene‐Based Organic Semiconductor with Small Exciton Binding Energy via Molecular Aggregation
    Mori, H.; Jinnai, S.; Hosoda, Y.; Muraoka, A.; Nakayama, K.; Saeki, A.; Ie, Y.
    Angew. Chem. Int. Ed., 2024, 63, e202409964.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202409964
  84. Green-light wavelength-selective organic solar cells: module fabrication and crop evaluation towards agrivoltaics
    Chatterjee, S.; Shimohara, N.; Seo, T.; Jinnai, S.; Moriyama, T.; Saida, M.; Omote, K.; Hara, K.; Iimuro, Y.; Watanabe, Y.; Ie, Y.
    Mater. Today Energy, 2024, 45, 101673.
    DOI:https://doi.org/https://doi.org/10.1016/j.mtener.2024.101673
  85. A V-shaped analog of ITIC with a small exciton binding energy
    Wang, K.; Jinnai, S.; Ie, Y.
    Chem. Lett., 2024, 53, upae220.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae220
  86. Isothianaphthene quinoids: pyrazine-annelated structures for tuning electronic properties
    Yamamoto, K.; Jinnai, S.; Ie, Y.
    Bull. Chem. Soc. Jpn., 2024, 97, uoae036.
    DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae036
  87. Stable Antiaromatic [16] Triphyrin (2.1.1) with Core Modification: Synthesis Using a 16π Electrocyclic Reaction
    Hirai, Y.; Kawazoe, Y.; Yamashita, K.
    Chem Eur J., 2024, 30, e202403097.
    DOI:https://doi.org/https://doi.org/10.1002/chem.202403097
  88. Sunlight-Driven Nitrate-to-Ammonia Reduction with Water by Iron Oxyhydroxide Photocatalysts
    Shiraishi, Y.; Akiyama, S.; Hiramatsu, W.; Adachi, K.; Ichikawa, S.; Hirai, T.
    JACS Au, 2024, 4, 1863–1874.
    DOI:https://doi.org/https://doi.org/10.1021/jacsau.4c00054
  89. Resorcinol-Formaldehyde Semiconducting Resins as Precursors for Carbon Spheres toward Electrocatalyric Oxygen Reduction
    Shiraishi, Y.; Kinoshita, K.; Sakamoto, K.; Yoshida, K.; Hiramatsu, W.; Ichikawa, S.; Tanaka, S.; Hirai, T.
    Chem. Commun., 2024, 60, 10866–10869.
    DOI:https://doi.org/https://doi.org/10.1039/D4CC03463E
  90. Electrocatalyric Oxygen Reduction on Nitrogen-Doped Porous Carbon Spheres Prepared with Resorcinol-Phenolsulfonic Acid-Formaldehyde Mixed Resins
    Sakamoto, K.; Kinoshita, K.; Shiraishi, Y.; Yoshida, K.; Hiramatsu, W.; Tanaka, S. Hirai, T.
    Chem. Lett., 2024, 53, upae215.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae215
  91. Theoretical study on the open-shell electronic structure and electron conductivity of [18]annulene as a molecular parallel circuit model
    Amamizu, N.; Nishida, M.; Sasaki, K.; Kishi, R.; Kitagawa, Y.
    Nanomaterials, 2024, 14, 98.
    DOI:https://doi.org/https://doi.org/10.3390/nano14010098
  92. Theoretical Study on Molecular Charge Populations of One-Dimensional π-Stacked Multimers in Neutral and Electron Oxidation States
    Yoshida, W; Shigeta, Y; Matsui, H; Miyamoto, H; Kishi, R; Kitagawa, Y
    Bull. Chem. Soc. Jpn., 2024, 97, uoae009.
    DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae009
  93. A Triply Linked Porphyrin−Norcorrole Hybrid with Singlet Diradical Character
    Wang, K; Ito, S; Ren, S; Shimizu, D;Fukui, N; Kishi, R;Liu, Qiang; Osuka, A; Song, J; Shinokubo, H
    Angew. Chem. Int. Ed., 2024, 63, e202401233.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202401233
  94. Theoretical Study on Open-Shell Electronic Structures of Through-Bond/Through-Space Hybrid Conjugated Ladder Graphs
    Yoshida, W; Miyamoto, H; Shoda, J; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y
    Chem. Phys. Lett., 2024, 842, 141196.
    DOI:https://doi.org/https://doi.org/10.1016/j.cplett.2024.141196
  95. Homochiral and Heterochiral Self-Sorting Assemblies of Antiaromatic Ni(II) Norcorrole Dimers
    Liu, S; Li, S; Ukai, S; Nozawa, R; Fukui, N; Sugimori, R; Kishi, R; Shinokubo, H
    Chem. Eur. J., 2024, 30, e202400292.
    DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
  96. Theoretical study on the correlation between open-shell electronic structures and third-order nonlinear optical properties in one-dimensional chains of π-radicals
    Shoda, J; Yokoyama, M; Yoshida, W; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y
    J. Phys. Chem. A, 2024, 128, 8473–8482.
    DOI:https://doi.org/https://doi.org/10.1021/acs.jpca.4c05200
  97. Bowl-Shaped Anthracene-Fused Antiaromatic Ni(II) Norcorrole: Synthesis, Structure, Assembly with C60, and Photothermal Conversion
    Wang, K; Ghosh, A; Shimizu, D; Takano, H; Ishida, M; Kishi, R; Shinokubo, H
    Angew. Chem. Int. Ed., 2024, , e202419289.
    DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
  98. Theoretical Study on One- and Two-Photon Absorption Properties of π-Stacked Multimer Models of Phenalenyl Radicals
    Yokoyama, M; Kishi, R; Kitagawa, Y
    Chemistry, 2024, 6, 1427–1438.
    DOI:https://doi.org/https://doi.org/10.3390/chemistry6060085
  99. Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models
    Miyamoto, H; Okada, K; Tada, K; Kishi, R; Kitagawa, Y
    Molecules, 2024, 29, 5449.
    DOI:https://doi.org/https://doi.org/10.3390/molecules29225449
  100. Theoretical Study on Stacking Distance Dependence of One- and Two-Photon Absorption Properties of Phenalenyl π-Dimer Models
    Yokoyama, M; Kishi, R; Kitagawa, Y
    Bull. Chem. Soc. Jpn., 2024, 97, uoae126.
    DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae126
  101. Effect of oxygen vacancies and crystal phases in defective Pt/ZrO2-x on its photocatalytic activity toward hydrogen production
    Yamazaki, Y.; Doshita, N.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H.
    Catalysis Science & Technology, 2024, 14, 397–404.
    DOI:https://doi.org/https://doi.org/10.1039/D3CY01470C
  102. Nonfullerene Acceptors Bearing Spiro-Substituted Bithiophene Units in Organic Solar Cells: Tuning the Frontier Molecular Orbital Distribution to Reduce Exciton Binding Energy
    Wang, K.; Jinnai, S.; Urakami, T.; Sato, H.; Higashi, M.; Tsujimura, S.; Kobori, Y.; Adachi, R.; Yamakata, A.; Ie, Y.
    Angew. Chem. Int. Ed., 2024, 63, e202412691.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202412691
  103. A Dibenzo[g,p]chrysene‐Based Organic Semiconductor with Small Exciton Binding Energy via Molecular Aggregation
    Mori, H.; Jinnai, S.; Hosoda, Y.; Muraoka, A.; Nakayama, K.; Saeki, A.; Ie, Y.
    Angew. Chem. Int. Ed., 2024, 63, e202409964.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202409964
  104. Green-light wavelength-selective organic solar cells: module fabrication and crop evaluation towards agrivoltaics
    Chatterjee, S.; Shimohara, N.; Seo, T.; Jinnai, S.; Moriyama, T.; Saida, M.; Omote, K.; Hara, K.; Iimuro, Y.; Watanabe, Y.; Ie, Y.
    Mater. Today Energy, 2024, 45, 101673.
    DOI:https://doi.org/https://doi.org/10.1016/j.mtener.2024.101673
  105. A V-shaped analog of ITIC with a small exciton binding energy
    Wang, K.; Jinnai, S.; Ie, Y.
    Chem. Lett., 2024, 53, upae220.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae220
  106. Isothianaphthene quinoids: pyrazine-annelated structures for tuning electronic properties
    Yamamoto, K.; Jinnai, S.; Ie, Y.
    Bull. Chem. Soc. Jpn., 2024, 97, uoae036.
    DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae036
  107. Stable Antiaromatic [16] Triphyrin (2.1.1) with Core Modification: Synthesis Using a 16π Electrocyclic Reaction
    Hirai, Y.; Kawazoe, Y.; Yamashita, K.
    Chem Eur J., 2024, 30, e202403097.
    DOI:https://doi.org/https://doi.org/10.1002/chem.202403097
  108. Sunlight-Driven Nitrate-to-Ammonia Reduction with Water by Iron Oxyhydroxide Photocatalysts
    Shiraishi, Y.; Akiyama, S.; Hiramatsu, W.; Adachi, K.; Ichikawa, S.; Hirai, T.
    JACS Au, 2024, 4, 1863–1874.
    DOI:https://doi.org/https://doi.org/10.1021/jacsau.4c00054
  109. Resorcinol-Formaldehyde Semiconducting Resins as Precursors for Carbon Spheres toward Electrocatalyric Oxygen Reduction
    Shiraishi, Y.; Kinoshita, K.; Sakamoto, K.; Yoshida, K.; Hiramatsu, W.; Ichikawa, S.; Tanaka, S.; Hirai, T.
    Chem. Commun., 2024, 60, 10866–10869.
    DOI:https://doi.org/https://doi.org/10.1039/D4CC03463E
  110. Electrocatalyric Oxygen Reduction on Nitrogen-Doped Porous Carbon Spheres Prepared with Resorcinol-Phenolsulfonic Acid-Formaldehyde Mixed Resins
    Sakamoto, K.; Kinoshita, K.; Shiraishi, Y.; Yoshida, K.; Hiramatsu, W.; Tanaka, S. Hirai, T.
    Chem. Lett., 2024, 53, upae215.
    DOI:https://doi.org/https://doi.org/10.1093/chemle/upae215
  111. Theoretical study on the open-shell electronic structure and electron conductivity of [18]annulene as a molecular parallel circuit model
    Amamizu, N.; Nishida, M.; Sasaki, K.; Kishi, R.; Kitagawa, Y.
    Nanomaterials, 2024, 14, 98.
    DOI:https://doi.org/https://doi.org/10.3390/nano14010098
  112. Theoretical Study on Molecular Charge Populations of One-Dimensional π-Stacked Multimers in Neutral and Electron Oxidation States
    Yoshida, W; Shigeta, Y; Matsui, H; Miyamoto, H; Kishi, R; Kitagawa, Y
    Bull. Chem. Soc. Jpn., 2024, 97, uoae009.
    DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae009
  113. A Triply Linked Porphyrin−Norcorrole Hybrid with Singlet Diradical Character
    Wang, K; Ito, S; Ren, S; Shimizu, D;Fukui, N; Kishi, R;Liu, Qiang; Osuka, A; Song, J; Shinokubo, H
    Angew. Chem. Int. Ed., 2024, 63, e202401233.
    DOI:https://doi.org/https://doi.org/10.1002/anie.202401233
  114. Theoretical Study on Open-Shell Electronic Structures of Through-Bond/Through-Space Hybrid Conjugated Ladder Graphs
    Yoshida, W; Miyamoto, H; Shoda, J; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y
    Chem. Phys. Lett., 2024, 842, 141196.
    DOI:https://doi.org/https://doi.org/10.1016/j.cplett.2024.141196
  115. Homochiral and Heterochiral Self-Sorting Assemblies of Antiaromatic Ni(II) Norcorrole Dimers
    Liu, S; Li, S; Ukai, S; Nozawa, R; Fukui, N; Sugimori, R; Kishi, R; Shinokubo, H
    Chem. Eur. J., 2024, 30, e202400292.
    DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
  116. Theoretical study on the correlation between open-shell electronic structures and third-order nonlinear optical properties in one-dimensional chains of π-radicals
    Shoda, J; Yokoyama, M; Yoshida, W; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y
    J. Phys. Chem. A, 2024, 128, 8473–8482.
    DOI:https://doi.org/https://doi.org/10.1021/acs.jpca.4c05200
  117. Bowl-Shaped Anthracene-Fused Antiaromatic Ni(II) Norcorrole: Synthesis, Structure, Assembly with C60, and Photothermal Conversion
    Wang, K; Ghosh, A; Shimizu, D; Takano, H; Ishida, M; Kishi, R; Shinokubo, H
    Angew. Chem. Int. Ed., 2024, , e202419289.
    DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
  118. Theoretical Study on One- and Two-Photon Absorption Properties of π-Stacked Multimer Models of Phenalenyl Radicals
    Yokoyama, M; Kishi, R; Kitagawa, Y
    Chemistry, 2024, 6, 1427–1438.
    DOI:https://doi.org/https://doi.org/10.3390/chemistry6060085
  119. Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models
    Miyamoto, H; Okada, K; Tada, K; Kishi, R; Kitagawa, Y
    Molecules, 2024, 29, 5449.
    DOI:https://doi.org/https://doi.org/10.3390/molecules29225449
  120. Theoretical Study on Stacking Distance Dependence of One- and Two-Photon Absorption Properties of Phenalenyl π-Dimer Models
    Yokoyama, M; Kishi, R; Kitagawa, Y
    Bull. Chem. Soc. Jpn., 2024, 97, uoae126.
    DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae126

2023年

  1. Introducing proton/electron mediators enhances the catalytic ability of an iron porphyrin complex for photochemical CO2 reduction
    Imai, M.; Kosugi, K.; Saga, Y.; Kondo, M.; Masaoka, S.
    Chem. Commun., 2023, 59,, 10741–10744.
    DOI:https://doi.org/https://doi.org/10.1039/D3CC01862H
  2. Accumulation of Re-Complex-Based Catalytic Centers in Metal–Organic Cages for Photochemical CO2 Reduction/Insertion
    M. Kitada, Z. L. Goo, K. Kosugi, Y. Saga, N. Yoshinari, M. Kondo, S. Masaoka
    Chem. Lett., 2023, 52, 512–515.
    DOI:https://doi.org/https://doi.org/10.1246/cl.230185
  3. Iron-Complex-Based Supramolecular Framework Catalyst for Visible-Light-Driven CO2 Reduction
    Kosugi, K.; Akatsuka, C.; Iwami, H.; Kondo, M.; Masaoka, S.
    J. Am. Chem. Soc., 2023, 145, 10451–10457.
    DOI:https://doi.org/https://doi.org/10.1021/jacs.3c00783
  4. Visible-Light-Driven Hydroacylation of Unactivated Alkenes Using Readily Available Acyl Donors
    Saga, Y.; Nakayama, Y.; Watanabe, T.; Kondo, M.; Masaoka, S.
    Org. Lett., 2023, 25, 1136–1141.
    DOI:https://doi.org/https://doi.org/10.1021/acs.orglett.2c04337
  5. Brønsted Acid/Base Site Isolated in a Pentanuclear Scaffold
    Tomoda, M.; Kondo, M.; Izu, H.; Masaoka, S.
    Chem. Eur. J., 2023, 29, e202203253.
    DOI:https://doi.org/https://doi.org/10.1002/chem.202203253
  6. Compositional Dependence of Charge Carrier Dynamics in Multi-Cation/Halide Wide Bandgap Perovskites
    Park, Y.; Nishikubo, R.; Saeki, A.
    J. Photopolym. Sci. Technol., 2023, 36, 359–366.
    DOI: https://doi.org/10.2494/photopolymer.36.359
  7. Exploration of Solution-Processed Bi/Sb Solar Cells by Automated Robotic Experiments Equipped with Microwave Conductivity
    Nishikawa, C.; Nishikubo, R.; Ishiwari, F.; Saeki, A.
    JACS Au, 2023, 3, 3194–3203.
    DOI: https://doi.org/10.1021/jacsau.3c00519
  8. Bar Coating Process of Two-Dimensional Lead Iodide Perovskite Solar Cells: Effects of Vertical Orientation, Anisotropic Photoconductivity, and Conversion Time
    Shimono, R.; Nishikubo, R.; Pylnev, M.; Ishiwari, F.; Wakamiya, A.; Saeki, A.
    ACS Appl. Energy Mater., 2023, 6, 9381–9389.
    DOI: https://doi.org/10.1021/acsaem.3c01329
  9. A chlorinated polythiophene-based polymer as a dopant-free hole transport material in perovskite solar cells
    Kranthiraja, K.; Nishikubo, R.; Saeki, A.
    Energy Adv., 2023, 2, 1030–1035.
    DOI: https://doi.org/10.1039/d3ya00113j
  10. Machine learning of atomic force microscopy images of organic solar cells
    Kobayashi, Y.; Miyake, Y.; Ishiwari, F.; Ishiwata, S.; Saeki, A.
    RSC Adv., 2023, 13, 15107–15113.
    DOI: https://doi.org/10.1039/D3RA02492J
  11. Unraveling complex performance-limiting factors of brominated ITIC derivative: PM6 organic solar cells by using time-resolved measurements
    Li, S.; Nishikubo, R.; Wada, T.; Umeyama, T.; Imahori, H.; Saeki, A.
    Polym. J., 2023, 53, 463–476.
    DOI: https://doi.org/10.1038/s41428-022-00704-1
  12. Elucidation of a Photothermal Energy Conversion Mechanism in Hydrogenated Molybdenum Suboxide: Interplay of Trapped Charges and Their Dielectric Interactions
    Nishikubo, R.; Kuwahara, Y.; Naito, S.; Kusu, K.; Saeki, A.
    J. Phys. Chem. Lett., 2023, 14, 1528–1534.
    DOI: https://doi.org/10.1021/acs.jpclett.3c00080
  13. Surface Passivation of Lead Halide Perovskite Solar Cells by a Bifacial Donor-π-Donor Molecule
    Minoi, N.; Ishiwari, F.; Murotani, K.; Nishikubo, R.; Fukushima, T.; Saeki, A.
    ACS Appl. Mater. Interfaces, 2023, 15, 6708–6715.
    DOI: https://doi.org/10.1021/acsami.2c18446
  14. Enhancing NIR-to-visible photon upconversion in cast solid by introducing bulky substituents in rubrene and by suppressing back energy transfer
    Sawa, A.; Shimada, S.; Tripathi, N.; Heck, C.; Tachibana, H.; Koyama, E.; Mizokuro, T.; Hirao, Y.; Kubo, T.; Tamai, N.; Kuzuhara, D.; Yamada, H.; Kamada, K.
    J. Mater. Chem. C, 2023, 11, 8502–8513.
    DOI: https://doi.org/10.1039/d3tc00853c
  15. Synthesis and structural evaluation of closed-shell folded and open-shell twisted hexabenzo[5.6.7]quinarene
    Nishiuchi, T.; Uchida, K.; Kubo, T.
    Chem. Commun., 2023, 59, 7379–7382.
    DOI: https://doi.org/10.1039/d3cc02157b
  16. Local probe-induced structural isomerization in a one-dimensional molecular array.
    Kawai, S.; Silveira, O.J.; Kurki, L.; Yuan, Z.; Nishiuchi, T.; Kodama, T.; Sun, K.; Custance, O.; Lado, J.L.; Kubo, T.
    Nat. Commun., 2023, 14, 7741.
    DOI: https://doi.org/10.1038/s41467-023-43659-4
  17. Synthesis and Properties of a Through-Space Interacting Diradicaloid
    Kodama, T.; Hirao, Y.; Kubo, T.
    Precis. Chem., 2023, 1, 183–191.
    DOI: https://doi.org/10.1021/prechem.3c00024
  18. Deprotonation-Induced and Ion-Pairing-Modulated Diradical Properties of Partially Conjugated Pyrrole–Quinone Conjunction
    Sugiura, S.; Kubo, T.; Haketa, Y.; Hori, Y.; Shigeta, Y.; Sakai, H.; Hasobe, T.; Maeda, H.
    J. Am. Chem. Soc., 2023, 145, 8122–8129.
    DOI: https://doi.org/10.1021/jacs.3c01025
  19. Closed-shell and open-shell dual nature of singlet diradical compounds
    Kubo, T.
    Pure Appl. Chem., 2023, 95, 363–375.
    DOI: https://doi.org/10.1515/pac-2023-0114
  20. Stacked antiaromaticity in the π-congested space between the aromatic rings in the anthracene dimer
    Nishiuchi, T.; Makihara, Y.; Kishi, R.; Sato, H.; Kubo, T.
    J. Phys. Org. Chem., 2023, 36, e4451.
    DOI: https://doi.org/10.1002/poc.4451
  21. Structurally well-defined conjugated meso-aminoporphyrin oligomers analogous to polyanilines
    Yamashita, K.; Takeuchi, S.; Sugiura, K.
    Chem. Sci., 2023, 14, 2735–2744.
    DOI: https://doi.org/10.1039/D2SC06387E
  22. Synthesis and Characterization of Quinone Compounds Derived from Doubly and Triply Linked Diporphyrins and Tuning of Their Absorption Properties
    Yamashita, K.; Hirano, D.; Fujimaki, K.; Sugiura, K.
    Chem. Asian J., 2023, 29, e202302637.
    DOI: https://doi.org/10.1002/chem.202302637
  23. Photoinduced crystal melting with luminescence evolution based on conformational isomerisation
    Komura, M.; Sotome, H.; Miyasaka, H.; Ogawa, T.; Tani, Y.
    Chem. Sci., 2023, 14, 5302–5308.
    DOI: http://dx.doi.org/10.1039/d3sc00838j
  24. Ultra-Rapid and Specific Gelation of Collagen Molecules for Transparent and Tough Gels by Transition Metal Complexation
    Suezawa, T.; Sasaki, N.; Yukawa, Y.; Assan, N.; Uetake, Y.; Onuma, K.; Kamada, R.; Tomioka, D.; Sakurai, H.; Katayama, R.; Inoue, M.; Matsusaki, M.
    Adv. Sci., 2023, 10, 2302637.
    DOI: https://doi.org/10.1002/advs.202302637
  25. Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum
    Yamauchi, Y.; Mondori, Y.; Uetake, Y.; Takeichi, Y.; Kawakita, T.; Sakurai, H.; Ogoshi, S.; Hoshimoto, Y.
    J. Am. Chem. Soc., 2023, 145, 16938–16947.
    DOI: https://doi.org/10.1021/jacs.3c06267
  26. Sumanene-stacked supramolecular polymers. Dynamic, solvation-directed control
    Mizuno, H.; Nakazawa, H.; Harada, M.; Yakiyama, Y.; Sakurai, H.; Fukuhara, G.
    Chem. Commun., 2023, 59, 9595–9598.
    DOI: https://doi.org/10.1039/D3CC02990E
  27. A sumanene-containing magnetic nanoadsorbent for the removal of caesium salts from aqueous solutions
    Kasprzak, A.; Matczuk, M.; Sakurai, H.
    Chem. Commun., 2023, 59, 9591–9594.
    DOI: https://doi.org/10.1039/D3CC02657D
  28. Dihydroxyacetone Production by Glycerol Oxidation under Moderate Condition Using Pt Loaded on La1-xBixOF Solids
    Nunotani, N.; Takashima, M.; Choi, Y.-B.; Uetake, Y.; Sakurai, H.; Imanaka, N.
    Chem. Commun., 2023, 59, 9533–9536.
    DOI: https://doi.org/10.1039/D3CC01734F
  29. Radiation-induced synthesis of carbon-supported niobium oxide nanoparticle catalysts and investigation of heat treatment conditions to improve the oxygen reduction reaction activity
    Shinyoshi, N.; Seino, S.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T.
    J. Ceram. Soc. Jpn., 2023, 131, 575–580.
    DOI: https://doi.org/10.2109/jcersj2.23039
  30. Fluorosumanenes as building blocks for organic crystalline dielectrics
    Yakiyama, Y.; Li, M.; Sakurai, H.
    Pure Appl. Chem., 2023, 95, 421–430.
    DOI: https://doi.org/10.1515/pac-2023-0211
  31. Derivatization of sumanenetrione through Lewis acid-mediated Suzuki-Miyaura coupling and an unprecedented ring opening
    Han, J.; Uetake, Y.; Yakiyama, Y.; Sakurai, H.
    Chem. Commun., 2023, 59, 4632–4635.
    DOI: https://doi.org/10.1039/D3CC00394A
  32. Application of Monoferrocenylsumanenes Derived from Sonogashira Cross-Coupling or Click Chemistry Reactions in Highly Sensitive and Selective Cesium Cation Electrochemical Sensors
    Kasprzak, A.; Gajda-Walczak, A.; Kowalczyk, A.; Wagner, B.; Nowicka, A. M.; Nishimoto, M.; Koszytkowska-Stawińska, M.; Sakurai, H.
    J. Org. Chem., 2023, 88, 4199–4208.
    DOI: https://doi.org/10.1021/acs.joc.2c02767
  33. Synthesis of π-extended and bowl-shaped sumanene-ferrocene conjugates and their application in highly selective and sensitive cesium cations electrochemical sensors
    Cyniak, J.; Kocobolska, Ł.; Bojdecka, N.; Gajda-Walczak, A.; Kowalczyk, A.; Wagner, B.; Nowicka, A.; Sakurai, H.; Kasprzak, A.
    Dalton Trans., 2023, 52, 3137–3147.
    DOI: https://doi.org/10.1039/D3DT00084B
  34. Size-selective Preparation of Gold Nanoparticles Stabilized on Chitosan Using the Matrix-Transfer Method
    Assan, N.; Uetake, Y.; Sakurai, H.
    J. Nanopart. Res., 2023, 25, 50.
    DOI: https://doi.org/10.1007/s11051-023-05700-x
  35. Acceleration Effect of Bowl‐shaped Structure in Aerobic Oxidation Reaction: Synthesis of Homosumanene ortho‐Quinone and Azaacene‐Fused Homosumanenes
    Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Saeki, A.; Freudenberg, J.; Bunz, U. H. F.; Sakurai, H.
    Chem. Eur. J., 2023, 29, e202203461.
    DOI: https://doi.org/10.1002/chem.202203461
  36. Synthesis of fully substituted sumanenes at the aromatic periphery through hexabromomethylation
    Nakazawa, H.; Uetake, Y.; Yakiyama, Y.; Sakurai, H.
    Asian J. Org. Chem., 2023, 12, e202200585.
    DOI: https://doi.org/10.1002/ajoc.202200585
  37. Pentagon-fused sumanenes on the aromatic peripheries en route to the bottom-up synthesis of fullerenes
    Nakazawa, H.; Uetake, Y.; Yakiyama, Y.; Sakurai, H.
    Synlett, 2023, 34, 374–378.
    DOI: https://doi.org/10.1055/a-1992-0487
  38. Thermodynamic differentiation of the two sides of azabuckybowl through complexation with square planar platinum(II)
    Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Sakurai, H.
    Chem. Asian J., 2023, 18, e202201103.
    DOI: https://doi.org/10.1002/asia.202201103
  39. Palladium-catalyzed synthesis of 4-sila-4H-benzo[d][1,3]oxazines by intramolecular Hiyama coupling
    Lee, D.; Shintani, R.
    Chem. Sci., 2023, 14, 4114–4119.
    DOI: https://doi.org/10.1039/D2SC06425A
  40. A Kinetically Stabilized Nitrogen-Doped Triangulene Cation: Stable and NIR Fluorescent Diradical Cation with Triplet Ground State
    Arikawa, S.; Shimizu, A.; Shiomi, D.; Sato, K.; Takui, T.; Sotome, H.; Miyasaka, H.; Murai, M.; Yamaguchi, S.; Shintani, R.
    Angew. Chem., Int. Ed., 2023, 62, e202302714.
    DOI: https://doi.org/10.1002/anie.202302714
  41. Zwitterionic Open-Shell Singlet Diradical with Solvent-Dependent Singlet–Triplet Energy Gap
    Shimizu, A.; Hayashida, M.; Ochi, Y.; Shiomi, D.; Sato, K.; Takui, T.; Shintani, R.
    Asian J. Org. Chem., 2023, 12, e202300224.
    DOI: https://doi.org/10.1002/ajoc.2023002244
  42. Copper-Catalyzed Synthesis of 3-Silyl-1-silacyclopent-2-enes via Regio- and anti-Selective Addition of Silylboronates to Silicon-Containing Internal Alkynes
    Kondo, R.; Moniwa, H.; Shintani, R.
    Org. Lett., 2023, 25, 4193–4197.
    DOI: https://doi.org/10.1021/acs.orglett.3c01526
  43. Palladium-catalyzed synthesis of benzosilacyclobutenes via position-selective C(sp3)–H arylation
    Hamada, N.; Hayashi, D.; Shintani, R.
    Chem. Commun., 2023, 59, 9122–9125.
    DOI: https://doi.org/10.1039/D3CC00442B
  44. Copper-Catalyzed Regio- and Stereoselective Formal Hydro(borylmethylsilyl)ation of Internal Alkynes via Alkenyl-to-Alkyl 1,4-Copper Migration
    Moniwa, H.; Yamanaka, M.; Shintani, R.
    J. Am. Chem. Soc., 2023, 145, 23470–23477.
    DOI: https://doi.org/10.1021/jacs.3c06187
  45. Palladium-Catalyzed Skeletal Rearrangement of Substituted 2-Silylaryl Triflates via 1,5-C–Pd/C–Si Bond Exchange
    Hayashi, D.; Tsuda, T.; Shintani, R.
    Angew. Chem., Int. Ed., 2023, 62, e202313171.
    DOI: https://doi.org/10.1002/anie.202313171
  46. Open-Shell Germylene Stabilized by a Phenalenyl-Based Ligand
    Kodama, T.; Uchida, K.; Nakasuji, C.; Kishi, R.; Kitagawa, Y.; Tobisu, M.
    Inorg. Chem., 2023, 62, 7861–7867.
    DOI: https://doi.org/10.1021/acs.inorgchem.3c00583
  47. Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
    Nishino, S.; Hirano, K.
    Asian J. Org. Chem., 2023, 12, e202200636.
    DOI: https://doi.org/10.1002/ajoc.202200636
  48. Synthesis of α-Aminophosphonates by Umpolung-Enabled Cu-Catalyzed Regioselective Hydroamination
    Nakamura, S.; Nishino, S.; Hirano, K.
    J. Org. Chem., 2023, 88, 1270–1281.
    DOI: https://doi.org/10.1021/acs.joc.2c02632
  49. One-Step Synthesis of Benzophosphole Derivatives from Arylalkynes by Phosphenium-Dication-Mediated Sequential C-P/C-C Bond Forming Reaction
    Nishimura, K.; Xu, S.; Nishii, Y.; Hirano, K.
    Org. Lett., 2023, 25, 1503–1508.
    DOI: https://doi.org/10.1021/acs.orglett.3c00263
  50. Preparation and Use of (γ,γ-Dioxyallyl)boronates
    Nishino, S.; Nishii, Y.; Hirano, K.
    Synlett, 2023, 34, 2205–2209.
    DOI: https://doi.org/10.1055/a-2051-1054
  51. Rhodium-Catalyzed Isoquinoline Synthesis Using Vinyl Selenone as Oxidizing Acetylene Surrogate
    Inami, A.; Nishii, Y.; Hirano, K.; Miura, M.
    Org. Lett., 2023, 25, 3206–3209.
    DOI: https://doi.org/10.1021/acs.orglett.3c00826
  52. Copper-mediated Trifluoromethylthiolation of Alkenyl Iodides with AgSCF3
    Kojima,Y.; Hirano, K.
    Chem. Lett., 2023, 52, 791–793.
    DOI: https://doi.org/10.1246/cl.230335
  53. Stimuli-Responsive Properties on a Bisbenzofuropyrazine Core: Mechanochromism and Concentration-Controlled Vapochromism
    Nakamura, S.; Okubo, K.; Nishii, Y.; Hirano, K.; Tohnai, N.; Miura, M.
    Chem. Eur. J., 2023, 29, e202302605.
    DOI: https://doi.org/10.1002/chem.202302605
  54. Rhodium-Catalyzed Direct Vinylene Annulation of 2-Aryloxazoline and Cascade Ring-Opening Using Vinyl Selenone
    Kitano, J.; Nishii, Y.; Hirano, K.; Miura, M.
    Synlett, 2023.
    DOI: https://doi.org/10.1055/a-2214-5299
  55. Synthesis, Structure, and Reactivity of a Gallylene Derivative Bearing a Phenalenyl-Based Ligand
    Kodama, T.; Mukai, N.; Tobisu, M.
    Inorg. Chem., 2023, 62,6554–6559.
    DOI:https://doi.org/10.1021/acs.inorgchem.3c00697
  56. Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst(special issue for Japan/Netherlands Gratama Workshop)
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Synlett, 2023, 35, 1296–1300.
    DOI:https://10.1055/a-2191-5906
  57. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation
    Tsuda, T.; Sheng, M.; Ishikawa, H.; Yamazoe, S.; Yamazaki, J.; Hirayama, M.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    Nat Commun., 2023, 14, 5959.
    DOI:https://www.nature.com/articles/s41467-023-41627-6
  58. Robust Ruthenium Phosphide Catalyst for Hydrogenation of Sulfur-Containing Nitroarenes(front cover)
    Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    ACS Catal., 2023, 13, 5744–5751.
    DOI:https://doi.org/10.1021/acscatal.3c00128 Highlighted in Synfacts, 2023, 19, 0705.
  59. Copper nitride nanocube catalyst for the highly efficient hydroboration of alkynes(front cover)
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Org. Biomol. Chem., 2023, 21, 1404–1410.
    DOI:https://doi.org/10.1039/D2OB02130G
  60. Green Oxidation of Indoles Using Molecular Oxygen over a Copper Nitride Nanocube Catalyst.
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Eur. J. Org. Chem., 2022, 2022, e20220826.
    DOI:https://doi.org/10.1002/ejoc.202200826
  61. Synthesis and structural evaluation of closed-shell folded and open-shell twisted hexabenzo[5.6.7]quinarene
    Nishiuchi, T.; Uchida, K.; Kubo, T.
    Chem. Commun., 2023, 59, 7379–7382.
    DOI:https://pubs.rsc.org/en/content/articlelanding/2023/cc/d3cc02157b
  62. Single–carbon atom transfer to α,β-unsaturated amides from N-heterocyclic carbenes
    Kamitani, M.; Nakayasu, B.; Yasui, K.; Fujimoto, H.; Kodama, T.; Tobisu, M.
    Science, 2023, 379, 484–488.
    DOI:https://www.science.org/doi/10.1126/science.ade5110
  63. 1,2-Diacylation of Alkynes Using Acyl Fluorides and Acylsilanes by P(III)/P(V) Catalysis
    Fujimoto, H.; Yamamura, S.; Kusano, M.; Tobisu, M.
    Org. Lett., 2023, 25, 336–340.
    DOI:https://doi.org/10.1021/acs.orglett.2c03910
  64. Selective and High-Rate CO2 Electroreduction by Metal-Doped Covalent Triazine Frameworks: A Computational and Experimental Hybrid Approach
    Kato, S.; Hashimoto, T.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K.
    Chem. Sci., 2023, 14, 613–620.
    DOI:https://doi.org/10.1039/D2SC03754H
  65. Ultra-high-rate CO2 reduction reactions to multicarbon products with a current density of 1.7 A cm-2 in neutral electrolytes
    Inoue, A.; Harada, T.; Nakanishi, S.; Kamiya, K.
    EES. Catal., 2023, 1, 9–16.
    DOI:https://doi.org/10.1039/D2EY00035K
  66. Stacked antiaromaticity in the π-congested space between the aromatic rings in the anthracene dimer
    Nishiuchi, T.; Makihara, Y.; Kishi, R.; Sato, H.; Kubo, T.
    J. Phys. Org. Chem., 2023, 36, e4451.
    DOI:https://doi.org/10.1002/poc.4451
  67. Finite element modeling of cycle characteristics of Li–O2 secondary batteries considering surface- and solution-route discharge reactions
    Mukouyama, Y.; Hanada, S.; Goto, T.; Nakanishi, S.
    J. Phys. Chem. C, 2023, 22, 10459–10469.
    DOI: https://doi.org/10.1021/acs.jpcc.3c01940
  68. Carbon monoxide reduction reaction to produce multicarbon products in acidic electrolytes using gas diffusion electrode loaded with copper nanoparticles
    Kurihara, R.; Nagita, K.; Ohashi, K.; Mukouyama, Y.; Harada, T.; Nakanishi, S.; Kamiya, k.
    Adv. Mater.Interface, 2023, 6, 2300731.
    DOI: https://doi.org/10.1002/admi.202300731
  69. Construction of an autocatalytic reaction cycle in neutral medium for synthesis of life-sustaining sugars
    Tabata, H.; Chikatani, G.; Nishijima, H.; Harada, T.; Miyake, R.; Kato, S.; Igarashi, K.; Mukouyama, Y.; Shirai, S.; Waki, M.; Hase, Y.; Nakanishi, S.
    Chem. Sci., 2023, 14, 13475–13484.
    DOI: https://doi.org/10.1039/D3SC03377E
  70. Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries
    Yu, W.; Yoshii, T.; Tang, A.A.R.; Pan, Z. Z.; Inoue, K.; Kotani, M.; Tanaka, H.; Scholtzová, E.; Tunega, D.; Nishina, Y.; Nishioka, K.; Nakanishi, S.; Zhou, Y.; Terasaki, O.; Nishihara, H.
    Adv. Sci., 2023, 16, 2300268.
    DOI: https://doi.org/10.1002/advs.202300268
  71. Angstrom-confined electrochemical synthesis of sub-unit cell non van der waals 2D metal oxides
    Ji, D.; Lee, Y.; Nishina, Y.; Kamiya, K.; Rahman Daiyan, R.; Chu, D.; Wen, X.; Yoshimura, M.; Kumar, P.; Andreeva, D.V.; Kostya Sovoselov, K.; Lee, G.H.; Joshi, R.; Foller, T.
    Adv. Mater., 2023, 30, 2301506.
    DOI: https://doi.org/10.1002/adma.202301506

2022年

  1. Visible Light-Driven CO2 Reduction with a Ru Polypyridyl Complex Bearing an N-Heterocyclic Carbene Moiety
    Watanabe, T.; Saga, Y.; Kosugi, K.; Iwami, H.; Kondo, M.; Masaoka, S.
    Chem. Commun., 2022, 58, 5229–5232.
    DOI:https://doi.org/https://doi.org/10.1039/D2CC00657J
  2. Electrochemical Polymerization of a Carbazole-Tethered Cobalt Phthalocyanine for Electrocatalytic Water Oxidation
    Li, S.; Iwami, H.; Kondo, M.; Masaoka, S.
    ChemNanoMat, 2022, 8, e202200028.
    DOI:https://doi.org/https://doi.org/10.1002/cnma.202200028
  3. Photochemical hydrogen production based on HCOOH/CO2 cycle promoted by pentanuclear cobalt complex
    Akai, T.; Kondo, M.; Saga, Y.; Masaoka, S.
    Chem. Commun., 2022, 58, 3755–3758.
    DOI:https://doi.org/https://doi.org/10.1039/D1CC06445B
  4. Copper(II) tetrakis(pentafluorophenyl)porphyrin: Highly Active Copper-based Molecular Catalyst for Electrochemical CO2 Reduction
    Kosugi, K.; Kashima, H.; Kondo, M.; Masaoka, S.
    Chem. Commun.,, 2022, 58,, 2975–2978.
    DOI:https://doi.org/https://doi.org/10.1039/D1CC05880K
  5. Synthesis and Electrocatalytic CO2 Reduction Activity of an Iron Porphyrin Complex Bearing a Hydroquinone Moiety
    Kosugi, K.; Imai, M.; Kondo, M.; Masaoka, S.
    Chem. Lett., 2022, 51, 224–226.
    DOI:https://doi.org/https://doi.org/10.1246/cl.210734
  6. Fabrication of a Function-Integrated Water Oxidation Catalyst by Electrochemical Polymerization of Ruthenium Complexes
    Iwami, H.; Kondo, M.; Masaoka, S.
    ChemElectroChem, 2022, 9, 52–58.
    DOI:https://doi.org/https://doi.org/10.1002/celc.202101363
  7. Unprecedented Wavelength Dependence of an Antimony Chalcohalide Photovoltaic Device
    Nishikubo, R.; Li, S.; Saeki, A.
    Adv. Funct. Mater., 2022, 32, 2201577.
    DOI: https://doi.org/10.1002/adfm.202201577
  8. Improved Predictions of Organic Photovoltaic Performance through Machine Learning Models Empowered by Artificially Generated Failure Data
    Miyake, Y.; Kranthiraja, K.; Ishiwari, F.; Saeki, A.
    Chem. Mater., 2022, 34, 6912–6920.
    DOI: https://doi.org/10.1021/acs.chemmater.2c01294
  9. Machine Learning-Assisted Polymer Design for Improving the Performance of Non-Fullerene Organic Solar Cells
    Kranthiraja, K.; Saeki, A.
    ACS Appl. Mater. Interfaces, 2022, 14, 28936–28944.
    DOI: https://doi.org/10.1021/acsami.2c06077
  10. Exploration of charge transport materials to improve the radiation tolerance of lead halide perovskite solar cells
    Murakami, Y.; Nishikubo, R.; Ishiwari, F.; Okamoto, K.; Kozawa, T.; Saeki, A.
    Mater. Adv., 2022, 3, 4861–4869.
    DOI: https://doi.org/10.1039/d2ma00385f
  11. Multivariate Analysis of Mixed Ternary and Quaternary A-Site Organic Cations in Tin Iodide Perovskite Solar Cells
    Nakanishi, E.; Nishikubo, R.; Ishiwari, F.; Nakamura, T.; Wakamiya, A.; Saeki, A.
    ACS Materials Lett., 2022, 4, 1124–1131.
    DOI: https://doi.org/10.1021/acsmaterialslett.2c00229
  12. Synthesis, properties and chemical modification of a persistent triisopropylsilylethynyl substituted tri(9-anthryl)methyl radical
    Nishiuchi, T.; Ishii, D.; Aibara, S.; Sato, H.; Kubo, T.
    Chem. Commun., 2022, 58, 3306–3309.
    DOI: https://doi.org/10.1039/d2cc00548d
  13. Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
    Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Bull. Chem. Soc. Jpn, 2022, 95, 1591–1599.
    DOI: https://doi.org/10.1246/bcsj.20220257
  14. Synergistic Enhancement of Hydrogen-Bonding and Charge-Transfer Interactions in a Crystal of an Anthranol–Acridine Dyad Comprised of a Hydrogen-Bonded Chain Aggregate
    Hirao, Y.; Inobe, H.; Hosoi, K.; Kubo, T.
    J. Phys. Chem. C, 2022, 126, 10940–10946.
    DOI: https://doi.org/10.1021/acs.jpcc.2c03584
  15. Tunable Solid-State Thermochromism: Alkyl Chain Length-Dependent Conformational Isomerization of Bianthrones
    Hirao, Y.; Hamamoto, Y.; Kubo, T.
    Chem. Asian J., 2022, 17, e202200121.
    DOI: https://doi.org/10.1002/asia.202200121
  16. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
    Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202200286.
    DOI: https://doi.org/10.1002/chem.202200286
  17. Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
    Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T.
    J. Am. Chem. Soc., 2022, 144, 7479–7488.
    DOI: https://doi.org/10.1021/jacs.2c02318
  18. Molecular and Spin Structures of a Through-Space Conjugated Triradical System
    Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T.
    Angew. Chem. Int. Ed., 2022, 61, e202200688.
    DOI: https://doi.org/10.1002/anie.202200688
  19. A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
    Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T.
    Org. Biomol. Chem., 2022, 20, 1671–1679.
    DOI: https://doi.org/10.1039/d1ob02358f
  20. 1,2,3-Tri(9-anthryl)benzene: Photophysical Properties and Solid-State Intermolecular Interactions of Radially Arranged, Congested Aromatic π-Planes
    Nishiuchi, T.; Sotome, H.; Shimizu, K.; Miyasaka, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202104245.
    DOI: https://doi.org/10.1002/chem.202104245
  21. Mechanism and Kinetics of Fluorescence Quenching of Fluorene-Endcapped Butatriene: A Microspectroscopic Study of the Discrete State Constructed in Microcrystals
    Hirao, Y.; Ihara, K.; Ishibashi, Y.; Tiu, E. G.; Asahi, T.; Kubo, T.
    J. Phys. Chem. C, 2022, 126, 1196–1203.
    DOI: https://doi.org/10.1021/acs.jpcc.1c09163
  22. 20π Antiaromatic Isophlorins without Metallation or Core Modification
    Sugimura, H.; Nakajima, K.; Yamashita, K.; Ogawa, T.
    Asian J. Org. Chem., 2022, 46, e202200747.
    DOI: https://doi.org/10.1002/ejoc.202200747
  23. N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li-O2 Batteries
    Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S.
    ACS Appl. Energy Mater., 2022, 5, 4404–4412.
    DOI: https://doi.org/10.1021/acsaem.1c03999
  24. Order-of-Magnitude Enhancement in Photocurrent Generation of Synechocystis Sp. PCC 6803 by Outer Membrane Deprivation
    Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S.
    Nat. Commun., 2022, 13, 3067.
    DOI: https://doi.org/10.1038/s41467-022-30764-z
  25. Structural Symmetry and Spin Multiplicity of Sumanene Derivative Radical Molecules
    Baba, Y.; Sakurai, H.; Muraoka, A.
    J. Comput. Chem. Jpn., 2022, 21, 55–57.
    DOI: https://doi.org/10.2477/jccj.2022-0033
  26. Intramolecular hydroamination catalysed by gold nanoparticles deposited on fibrillated cellulose
    Uetake, Y.; Suwattananuruk, B.; Sakurai, H.
    Sci. Rep., 2022, 12, 20602.
    DOI: https://doi.org/10.1038/s41598-022-24955-3
  27. Sumanene-Functionalised Bis(terpyridine)-Ruthenium(II) Complexes Showing Photoinduced Structural Change and Cation Sensing
    Han, J.; Yakiyama, Y.; Takeda, Y.; Sakurai, H.
    Inorg. Chem. Front., 2022, 10, 211–217.
    DOI: https://doi.org/10.1039/D2QI01801B
  28. Synthesis of Sumanene-fused Acenes
    Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H.
    Asian J. Org. Chem., 2022, 11, e202200471.
    DOI: https://doi.org/10.1002/ajoc.202200471
  29. Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
    Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P.
    J. Phys. Chem. A, 2022, 126, 5283–5293.
    DOI: https://doi.org/10.1021/acs.jpca.2c02906
  30. Turning Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
    Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H.
    Chem. Commun., 2022, 58, 8950–8953.
    DOI: https://doi.org/10.1039/D2CC02766F
  31. Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
    Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T.
    RADIOISOTOPES, 2022, 71, 171–177.
    DOI: https://doi.org/10.3769/radioisotopes.71.171
  32. Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
    Yamauchi, Y.; Hoshimoto, Y.; Kawakita, T.; Kinoshita, T.; Uetake, Y.; Sakurai, H.; Ogoshi, S.
    J. Am. Chem. Soc., 2022, 144, 8818–8826.
    DOI: https://doi.org/10.1021/jacs.2c02870
  33. Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
    Li, M.; Wu, J.-Y.; Sambe, K.; Yakiyama, Y.; Akutagawa, T.; Kajitani, T.; Fukushima, T.; Matsuda, K.; Sakurai, H.
    Mater. Chem. Front., 2022, 6, 1752–1758.
    DOI: https://doi.org/10.1039/D2QM00134A
  34. Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
    Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H.
    J. Org. Chem., 2022, 87, 2508–2519.
    DOI: https://doi.org/10.1021/acs.joc.1c02416
  35. Tuning the sumanene receptor structure towards the development of potentiometric sensors
    Kasprzak, A.; Tobolska, A.; Sakurai, H.; Wróblewski, W.
    Dalton Trans., 2022, 51, 468–472.
    DOI: https://doi.org/10.1039/d1dt03467g
  36. Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene-within-an-Annulene Models
    Miyoshi, H.; Sugiura, R.; Kishi, R.; Spisak, S. N.; Wei, Z.; Muranaka, A.; Uchiyama, M.; Kobayashi, N.; Chatterjee, S.; Ie, Y.; Hisaki, I.; Petrukhina, M. A.; Nishinaga, T.; Nakano, M.; Tobe, Y.
    Angew. Chem. Int. Ed., 2022, 61, e202115316.
    DOI:https://doi.org/10.1002/anie.202115316
  37. Medium Diradical Character, Small Hole and Electron Reorganization Energies and Ambipolar Transistors in Difluorenoheteroles
    Mori, S.; Moles Quintero, S.; Tabaka, N.; Kishi, R.; González Núñez, R.; Harbuzaru, A.; Ponce Ortiz, R.; Marín‐Beloqui, J.; Suzuki, S.; Kitamura, C.; Gómez‐García, C. J.; Dai, Y.; Negri, F.; Nakano, M.; Kato, S.; Casado, J.
    Angew. Chem. Int. Ed., 2022, 61, e202206680.
    DOI:https://doi.org/10.1002/anie.202206680
  38. Characterization of resonance structures in aromatic rings of benzene and its heavier-element analogues
    Sugahara, T.; Hashizume, D.; Tokitoh, N.; Matsui, H.; Kishi, R.; Nakano, M.; Sasamori, T.
    Phys. Chem. Chem. Phys., 2022, 24, 22557–22561.
    DOI:https://doi.org/10.1039/D2CP03068C
  39. Theoretical study on the structures, electronic properties, and aromaticity of thia[4]circulenes
    Hashimoto, S.; Kishi, R.; Tahara, K.
    New J. Chem., 2022, 46, 22703–22714.
    DOI:https://doi.org/10.1039/d2nj04359a
  40. Synthesis of Cage-Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation
    Tsutsui, Y.; Tanaka, D.; Manabe, Y.; Ikinaga, Y.; Yano, K.; Fukase, K.; Konishi, A.; Yasuda, M.
    New J. Chem., 2022, 46, e202202284.
    DOI:https://doi.org/10.1039/D2NJ04359A
  41. Lewis Acid-Catalyzed Diastereoselective C–C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,β-Diaryl-β-haloesters
    Wang, F.; Nishimoto, Y.; Yasuda, M.
    Angew. Chem. Int. Ed., 2022, 61, e202204462.
    DOI:https://doi.org/10.1002/anie.202204462
  42. anti-Selective Borylstannylation of Alkynes with (o-Phenylenediaminato)borylstannanes by a Radical Mechanism
    Suzuki, K.; Sugihara, N.; Nishimoto, Y.; Yasuda, M.
    Angew. Chem. Int. Ed., 2022, 61, e202201883.
    DOI:https://doi.org/10.1002/anie.202201883
  43. Indium-Catalyzed Formal Carbon−Halogen Bond Insertion: Synthesis of α‐Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters
    Wang, F.; Nishimoto, Y.; Yasuda, M.
    Org. Lett., 2022, 24, 1706–1710.
    DOI:https://doi.org/10.1021/acs.orglett.2c00343
  44. Bis-periazulene (Cyclohepta[def]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives
    Horii, K.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Konishi, A.; Yasuda, M.
    J. Am. Chem. Soc., 2022, 144, 3370–3375.
    DOI:https://doi.org/10.1021/jacs.2c00476
  45. Carboboration-Driven Generation of a Silylium Ion for Vinylic C–F Bond Functionalization by B(C6F5)3 Catalysis
    Yata, T.; Nishimoto, Y.; Yasuda, M.
    Chem. Eur. J., 2022, 28, e202103852.
    DOI:https://doi.org/10.1002/chem.202103852
  46. Revisiting Glycosylations Using Glycosyl Fluoride by BF3∙Et2O: Activation of Disarmed Glycosyl Fluorides with High Catalytic Turnover
    Yata, T.; Nishimoto, Y.; Yasuda, M.
    Org. Lett., 2022, 24, 6–10.
    DOI:https://doi.org/10.1021/acs.orglett.1c03233
  47. Synthesis and Characterization of Dinaphtho[2,1-a:2,3-f]pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer
    Horii, K.; Nogata, A.; Mizuno, Y.; Iwasa, H.; Suzuki, M.; Nakayama, K.; Konishi, A.; Yasuda, M.
    Chem. Lett., 2022, 51, 325–329.
    DOI:https://doi.org/10.1246/cl.210809
  48. Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics
    Jinnai, S.; Murayama, K.; Nagai, K.; Mineshita, M.; Kato, K.; Muraoka, A.; Yamakata, A.; Saeki, A.; Kobori, Y.; Ie, Y.
    J. Mater. Chem. A, 2022, 10, 20035–20047.
    DOI:https://doi.org/10.1039/D2TA02604J
  49. A Tin Oxide-Coated Copper Foam Hybridized with a Gas Diffusion Electrode for Efficient CO2 Reduction to Formate with a Current Density Exceeding 1 A cm−2
    Liu, T.; Ohashi, K.; Nagita, K.; Harada, T.; Nakanishi, S.; Kamiya, K.
    Small, 2022, 18, 2205323.
    DOI:https://doi.org/10.1002/smll.202205323
  50. Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation
    Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S.
    Nat. Commun., 2022, 13, 3067.
    DOI:https://doi.org/10.1038/s41467-022-30764-z
  51. N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li–O2 Batteries
    Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S.
    ACS Appl. Energy Mater., 2022, 5, 4404–4412.
    DOI:https://doi.org/10.1021/acsaem.1c03999
  52. NADPH production in dark stages is critical for cyanobacterial photocurrent generation: A study using mutants deficient in oxidative pentose phosphate pathway
    Hatano, J.; Kusama, S.; Tanaka, K.; Kohara, A.; Miyake, C.; Nakanishi, S.; Shimakawa, G.
    Photosynth. Res., 2022, 153, 113–120.
    DOI:https://doi.org/10.1007/s11120-022-00903-0
  53. Positive Feedback Mechanism to Increase the Charging Voltage of Li‒O2 Batteries
    Hase, Y.; Uyama, T.; Nishioka, K.; Seki, J.; Morimoto, K.; Ogihara, N.; Mukouyama, Y.; Nakanishi, S.
    J. Am. Chem. Soc., 2022, 144, 1296–1305.
    DOI:https://doi.org/10.1021/jacs.1c10986
  54. Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration
    Shintani, R.; Hama, D.; Hamada, N.; Miwa, T.
    Tetrahedron Lett., 2022, 104, 154301.
    DOI:https://doi.org/10.1016/j.tetlet.2022.154031
  55. Synthesis of Poly(arylenevinylene)s by Rhodium-Catalyzed Stitching Polymerization/Alkene Isomerization
    Togawa, S.; Shintani, R.
    J. Am. Chem. Soc., 2022, 144, 18545–.
    DOI:https://doi.org/10.1021/jacs.2c07835
  56. Tunable Solid-State Thermochromism: Alkyl Chain Length-Dependent Conformational Isomerization of Bianthrones
    Hirao, Y.; Hamamoto, Y.; Kubo, T.
    Chem. Asian J., 2022, 17, e202200121.
    DOI:https://doi.org/10.1039/D1OB02358F
  57. A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
    Hirao, Y.; Eto, M.; Teraoka, M.; Kubo, T.
    Org. Biomol. Chem., 2022, 20, 1671–1679.
    DOI:https://doi.org/10.1039/D2SC06003E
  58. anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters
    Nishino, S.; Nishii, Y.; Hirano, K.
    Chem. Sci., 2022, 13, 14387–14394.
    DOI:https://doi.org/10.1039/D2SC06003E
  59. Palladium-catalysed C-H arylation of benzophospholes with aryl halides
    Xu, S.; Nishimura, K.; Saito, K.; Hirano, K.; Miura, M.;
    Chem. Sci., 2022, 13, 10950–10960.
    DOI:https://doi.org/10.1039/D2SC04311D
  60. Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes
    Kojima, Y.; Nishii, Y.; Hirano, K.
    Org. Lett., 2022, 24, 7450–7454.
    DOI:https://doi.org/10.1021/acs.orglett.2c03024
  61. Pd-catalyzed, Ag-assisted C2-H alkenylation of benzophospholes
    Tokura, Y.; Xu, S.; Kojima, Y.; Miura, M.; Hirano, K.
    Chem. Commun., 2022, 58, 12208–12212.
    DOI:https://doi.org/10.1039/D2CC04942B
  62. Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
    Nishino, S.; Hirano, K.
    Asian J. Org. Chem., 2022, ##, ####–####.
    DOI:https://doi.org/10.1002/ajoc.202200636
  63. Nickel-Catalyzed Cross Coupling via C–O and C–N Activation
    Yoshida, T.; Tobisu
    Science of Synthesis: Base-Metal Catalysis, 2022, 1, 591–630.
    DOI:https://www.thieme-connect.com/products/ebooks/lookinside/10.1055/sos-SD-238-00298
  64. Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzene
    Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Bull. Chem. Soc. Jpn., 2022, 95, 1591–1599.
    DOI:https://doi.org/10.1246/bcsj.20220257
  65. Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
    Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P.
    J. Phys. Chem. A, 2022, 126, 5283–5293.
    DOI:https://doi.org/10.1021/acs.jpca.2c02906
  66. Synthesis of Sumanene-fused Acenes
    Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H.
    Asian J. Org. Chem., 2022, ##, ####–####.
    DOI:https://doi.org/10.1002/ajoc.202200471
  67. Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
    Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Bull. Chem. Soc. Jpn. 2022, ##, ####–####.
    DOI:https://www.journal.csj.jp/doi/abs/10.1246/bcsj.20220257
  68. Synthetic Applications of C–O and C–E Bond Activation Reactions
    Tobisu, M.; Kodama, T.; Fujimoto, H.
    Comprehensive Organometallic Chemistry IV, 2022, 12, pp347–420.
    DOI:https://www.sciencedirect.com/science/article/pii/B9780128202067000895
  69. Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
    Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H.
    J. Org. Chem., 2022, 87, 2508–2519.
    DOI:https://doi.org/10.1021/acs.joc.1c02416
  70. Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
    Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T.
    RADIOISOTOPES, 2022, 71, 171–177.
    DOI:https://doi.org/10.3769/radioisotopes.71.171
  71. Turning the Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
    Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H.
    Chem. Commun., 2022, 58, 8950–8953.
    DOI:https://doi.org/10.1039/D2CC02766F
  72. Nickel-catalyzed 1,4-aryl rearrangement of aryl N-benzylimidates via C–O and C–H bond cleavage (cover picture)
    Ogawa, S.; Tobisu, M.
    Chem. Commun., 2022, 58, 7909–7912.
    DOI:https://doi.org/10.1039/D2CC02355E
  73. Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate
    Shimazumi, R.; Tanimoto, R.; Kodama, T.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 11033–11043.
    DOI:https://doi.org/10.1021/jacs.2c04527
  74. Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
    Yamauchi, Y.: Hoshimoto, Y.: Kawakita, T.: Kinoshita, T.: Uetake, Y.: Sakurai, H.: Ogoshi, S.
    J. Am. Chem. Soc., 2022, 144, 8818–8826.
    DOI:https://doi.org/10.1021/jacs.2c02870
  75. Tuning the sumanene receptor structure towards the development of potentiometric sensors
    Kasprzak, A.: Tobolska, A.: Sakurai, H.: Wróblewski, W.
    Dalton Trans., 2022, 51, 468–472.
    DOI:https://doi.org/10.1021/acs.joc.1c02416
  76. Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
    Li, M.; JianYun Wu,J,Y.; Sambe, K.; Yakiyama, Y. ; Akutagawa, T.; Kajitani, T.; Fukushima, T. ; Matsudah K.; Sakurai, H.
    Mater. Chem. Front., 2022, 6, 1752–1758.
    DOI:https://doi.org/10.1039/D2QM00134A
  77. Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
    Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T.
    J. Am. Chem. Soc., 2022, 144, 7479–7488.
    DOI:https://doi.org/10.1021/jacs.2c02318
  78. Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use in Catalytic Nucleophilic Aromatic Substitution
    Ito, S.; Fujimoto, H.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 6714–6718.
    DOI:https://doi.org/10.1021/jacs.2c02579
  79. Nickel-Catalyzed Skeletal Transformation of Tropone Derivatives via C–C Bond Activation: Catalyst-Controlled Access to Diverse Ring Systems
    Kodama, T.; Saito, K.; Tobisu, M.
    Chem. Sci., 2022, 13, 4922–2929.
    DOI:https://doi.org/10.1039/D2SC01394K
  80. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
    Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202200286.
    DOI:https://doi.org/10.1002/chem.202200286
  81. Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
    Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A.
    Sens. Bio-Sens. Res., 2022, 35, 100470.
    DOI:https://doi.org/10.1016/j.sbsr.2021.100470
  82. Palladium-Catalyzed Silylacylation of Allenes Using Acylsilanes
    Inagaki, T.; Sakurai, S.; Yamanaka, M. Tobisu, M.
    Angew. Chem. Ind. Ed., 2022, 61, e202202387.
    DOI:https://doi.org/10.1002/anie.202202387
  83. Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst(front cover)
    Sakoda, K.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    JACS Au, 2022, 2, 665–672.
    DOI:https://doi.org/10.1021/jacsau.1c00535
  84. Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus(front cover)
    Ishikawa, H.; Yamaguchi, S.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    JACS Au, 2022, 2, 419–427.
    DOI:https://doi.org/10.1021/jacsau.1c00461
  85. Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
    Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M.; Ajavakom, A.
    Sens. Bio-Sens. Res., 2022, 35, 100470.
    DOI:https://doi.org/10.1016/j.sbsr.2021.100470
  86. Overlooked Factors Required for Electrolyte Solvents in Li–O₂ Batteries: Capabilities of Quenching 1O₂ and Forming Highly-Decomposable Li₂O₂
    Nishioka, K.; Tanaka, M.; Fujimoto, H.; Amaya, T.; Ogoshi, S.; Tobisu, M.; Nakanishi, S.
    Angew. Chem. Ind. Ed., 2022, 61, e202112769.
    DOI:https://doi.org/10.1002/anie.202112769
  87. Molecular and Spin Structures of a Through-Space Conjugated Triradical System
    Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T.
    Angew. Chem. Ind. Ed., 2022, 61, e202200688.
    DOI:https://doi.org/10.1002/anie.202200688
  88. Synthesis, Properties and Chemical Modification of a Persistent Triisopropylsilylethynyl Substituted Tri(9-anthryl)methyl Radical
    Nishiuchi, T.; Ishii, D; Aibara, S.; Sato, H.; Kubo, T.
    Chem. Commun., 2022, 58, 3306–3309.
    DOI:https://doi.org/10.1039/D2CC00548D
  89. A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
    Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T.
    Org. Biomol. Chem., 2022, 20, 1671–1679.
    DOI:https://doi.org/10.1039/D1OB02358F
  90. Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes
    Sakurai, S.; Inagaki, T.; Kodama, T.; Yamanaka, M. Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 1099–1105.
    DOI:https://pubs.acs.org/doi/10.1021/jacs.1c11497
  91. Nickel-Catalyzed Addition of C–C Bonds of Amides to Strained Alkenes: The 1,2-Carboaminocarbonylation Reaction
    Ito, Y.; Nakatani, S.; Shiraki, R.; Kodama, T.; Tobisu, M.
    J. Am. Chem. Soc., 2022, 144, 662–666.
    DOI:https://pubs.acs.org/doi/10.1021/jacs.1c09265
  92. Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy
    Li, X.; Shigemitsu, H.; Goto, T.; Kida, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y.
    Nanoscale Adv., 2022, 4, 2992–2995.
    DOI:https://doi.org/10.1039/D2NA00318J
  93. Enhanced Photocatalytic Activity of Porphyrin Nanodisks Prepared by Exfoliation of Metalloporphyrin-Based Covalent Organic Frameworks
    Li, X.; Nomura, K.; Guedes, A.; Goto, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y.
    ACS Omega, 2022, 7, 7172–7278.
    DOI:https://doi.org/10.1021/acsomega.1c06838
  94. Single-molecule Fluorescence Kinetic Sandwich Assay Using a DNA Sequencer
    Kawai, K.; Fujitsuka, M.
    Chem. Lett., 2022, 51, 139–141.
    DOI:https://doi.org/10.1246/cl.210726
  95. Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking
    Fan, S.; Xu, J.; Osakada, Y.; Hashimoto, K.; Takayama, K.; Natsume, A.; Hirano, M.; Maruyama, A.; Fujitsuka, M.; Kawai, K.; Kawai, K.
    Chem, 2022, 8, 3109–3119.
    DOI:https://doi.org/10.1016/j.chempr.2022.07.025
  96. Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA
    Fan, S.; Takada, T.; Maruyama, A.; Fujitsuka, M.; Kawai, K.
    Bull. Chem. Soc. Jpn., 2022, 95, 1697–1702.
    DOI:https://doi.org/10.1246/bcsj.20220220
  97. Amphiphilic Rhodamine Nano-assembly as a Type I Supramolecular Photosensitizer for Photodynamic Therapy
    Shigemitsu, H.; Sato, K.; Hagio, S.; Tani, Y.; Mori, T.; Ohkubo, K.; Osakada, Y.; Fujitsuka, M.; Kida, T.
    ACS Appl. Nano Mater., 2022, 5, 14954–14960.
    DOI:https://doi.org/10.1021/acsanm.2c03192
  98. Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly
    Shigemitsu, H.; Ohkubo, K.; Sato, K.; Bunno, A.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T.
    JACS Au, 2022, 2, 1472–1478.
    DOI:https://doi.org/10.1021/jacsau.2c00243

2021年

  1. Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting
    Cai, X.; Mao, L.; Fujitsuka, M.; Majima, T.; Kasani, S.; Wu, N.; Zhang, J.
    Nano Res., 2021, 15, 438–445.
    DOI:https://doi.org/10.1007/s12274-021-3498-5
  2. Defect-mediated electron transfer in photocatalysts
    Xue, J.; Fujitsuka, M.; Majima, T.
    Chem. Commun., 2021, 57, 3532–2542.
    DOI:https://doi.org/10.1039/D1CC00204J
  3. Control of Triplet Blinking Using Cyclooctatetraene to Access the Dynamics of Biomolecules at the Single-Molecule Level
    Xu, J.; Fan, S.; Xu, L.; Maruyama, A.; Fujitsuka, M.; Kawai, K.
    Angew. Chem. Int. Ed., 2021, 60, 12941–12948.
    DOI:https://doi.org/10.1002/anie.202101606
  4. Electronic and Structural Properties of 2,3-Naphthalimide in Open-Shell Configurations Investigated by Pulse Radiolytic and Theoretical Approaches
    Zhuang, B.; Tojo, S.; Fujitsuka, M.
    ChemistrySelect, 2021, 6, 3331–3338.
    DOI:https://doi.org/10.1002/slct.202100417
  5. One-Pot Synthesis of Long Rutile TiO2 Nanorods and Their Photocatalytic Activity for O2 Evolution: Comparison with Near-Spherical Nanoparticles
    Yamazaki, S.; Kutoh, M.; Yamazaki, Y.; Yamamoto, N.; Fujitsuka, M.
    ACS Omega, 2021, 6, 31557–31565.
    DOI:https://doi.org/10.1021/acsomega.1c04003
  6. Stacked Thiazole Orange Dyes in DNA Capable of Switching Emissive Behavior in Response to Structural Transitions
    Takada, T.; Nishida, K.; Honda, Y.; Nakano, A.; Nakamura, M.; Fan, S.; Kawai, K.; Fujitsuka, M.; Yamana, K.
    ChemBioChem, 2021, 22, 2729–2735.
    DOI:https://doi.org/10.1002/cbic.202100309
  7. A cyanine dye based supramolecular photosensitizer enabling visible-light-driven organic reaction in water
    Shigemitsu, H.; Tamemoto, T.; Ohkubo, K.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T.
    Chem. Commun., 2021, 57, 11217–11220.
    DOI:https://doi.org/10.1039/D1CC04685C
  8. Femtosecond time-resolved diffuse reflectance study on facet engineered charge‐carrier dynamics in Ag3PO4 for antibiotics photodegradation
    He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T.
    Appl. Catal., B, 2021, 281, 119479.
    DOI:https://doi.org/10.1016/j.apcatb.2020.119479
  9. COF-based photocatalyst for energy and environment applications
    Li, X.; Kawai, K.; Fujitsuka, M.; Osakada, Y.
    Surf. Interfaces, 2021, 25, 101249.
    DOI:https://doi.org/10.1016/j.surfin.2021.101249
  10. Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking
    Kawai, K.; Fujitsuka, M.; Maruyama, A.
    Acc. Chem. Res., 2021, 54, 1001–1010.
    DOI:https://doi.org/10.1021/acs.accounts.0c007549
  11. Theoretical Study on Singlet Fission in Aromatic Diaza s-Indacene Dimers
    Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M.
    J. Phys. Chem. A, 2021, 125, 3257–3267.
    DOI:https://doi.org/10.1021/acs.jpca.0c11598
  12. Characterization of Benzo[a]naphtho[2,3-f]pentalene: Interrelation between Open-shell and Antiaromatic Characters Governed by Mode of the Quinoidal Subunit and Molecular Symmetry
    Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M.
    Chem. Asian. J., 2021, 16, 1553–1561.
    DOI:https://doi.org/10.1002/asia.202100398
  13. Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models
    Tonami, T.; Sugimori, R.; Sakai, R.; Tokuyama, K.; Miyamoto, H.; Nakano, M.
    Phys. Chem. Chem. Phys., 2021, 23, 11624–11634.
    DOI:https://doi.org/10.1039/D1CP00880C
  14. Theoretical Study on Singlet Fission Dynamics in Slip-Stack-Like Pentacene Ring-Shaped Aggregate Models
    Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M.
    J. Phys. Chem. A, 2021, 125, 5586–5600.
    DOI:https://doi.org/10.1021/acs.jpca.1c03934
  15. Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
    Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M.
    Molecules, 2021, 26, 6129.
    DOI:https://doi.org/10.3390/molecules26206129
  16. Long Carbon–Carbon Bonding beyond 2 Å in Tris(9-fluorenylidene)methane
    Kubo, T.; Suga, Y.; Hashizume, D.; Suzuki, H.; Miyamoto, T.; Okamoto, H.; Kishi, R.; Nakano, M.
    J. Am. Chem. Soc., 2021, 143, 14360–14366.
    DOI:https://doi.org/10.1021/jacs.1c07431
  17. A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ring-Opening of Benzofuran-fused s-Indacenes and Dicyclopenta[b,g]naphthalenes
    Barker, J. E.; Price, T. W.; Karas, L. J.; Kishi, R.; MacMillan, S. N.; Zakharov, L. N.; Gómez‐García, C. J.; Wu, J. I.; Nakano, M.; Haley, M. M.
    Angew. Chem. Int. Ed., 2021, 60, 22385–22392.
    DOI:https://doi.org/10.1002/anie.202107855
  18. Insertion of Diazo Esters into C−F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF3 Catalysis with C−F Bond Cleavage and Re-formation (cover picture)
    Wang, F.; Nishimoto, Y.; Yasuda, M.
    J. Am. Chem. Soc., 2021, 143, 20616–20621.
    DOI:https://doi.org/10.1021/jacs.1c10517
  19. Biradicaloid Behavior of a Twisted Double Bond
    Hamamoto, Y.; Hirao, Y.; Kubo, T.
    J. Phys. Chem. Lett., 2021, 12, 4729–4734.
    DOI:https://doi.org/10.1021/acs.jpclett.1c00664
  20. Strong Metal–Support Interaction in Pd/Ca2AlMnO5+δ: Catalytic NO Reduction over Mn-Doped CaO Shell
    Hosokawa, S.; Oshino, Y.; Tanabe, T.; Koga, H.; Beppu, K.; Asakura, H.; Teramura, K.; Motohashi, T.; Okumura, M.; Tanaka, T.
    ACS Catal., 2021, 11, 7996–8003.
    DOI:https://doi.org/10.1021/acscatal.1c01559
  21. Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
    Era, I.; Kitagawa, Y.; Yasuda, N.; Kamimura, T.; Amamizu, N.; Sato, H.; Cho, K.; Okumura, M.; Nakano, M.
    Molecules, 2021, 26, 6129.
    DOI:https://doi.org/10.3390/molecules26206129
  22. Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction (Cover)
    Niwa, T.; Uetake, Y.; Isoda, M.; Takimoto, T.; Nakaoka, M.; Hashizume, D.; Sakurai, H.; Hosoya, T.
    Nature. Catal., 2021, 4, 6593–6597.
    DOI:https://doi.org/10.1038/s41929-021-00719-6
  23. 1,2,3-Tri(9-anthryl)benzene: Photophysical Properties and Solid State Intermolecular Interactions of Radially Arranged, Congested Aromatic π-Planes (cover picture)
    Nishiuchi, T.; Sotome, H.; Shimizu, K.; Miyasaka, H.; Kubo, T.
    Chem. Eur. J., 2022, 28, e202104245.
    DOI:https://doi.org/10.1002/chem.202104245
  24. Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium.
    Kasama, K.; Kanomata, K.; Hinami, Y.; Mizuno, K.; Uetake, Y.; Amaya, T.; Sako, M.; Takizawa, S.; Sasai, H.; Akai, S.
    RSC Adv., 2021, 11, 35342–35350.
    DOI:https://doi.org/10.1039/D1RA07723F
  25. Synthesis of Benzoisoselenazolones via Rh(III)-catalyzed Direct Annulative Selenation Using Elemental Selenium.
    Xu-Xu, Q.-F.; Nishii, Y.; Uetake, Y.; Sakurai, H.; Miura, M.
    Chem. Eur. J., 2021, 27, 17952–17959.
    DOI:https://doi.org/10.1002/chem.202103485
  26. Pyridine Ring Modification of Indane-1,3-dione Dimers for Control of their Crystal Structure.
    Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H.
    Asian J. Org. Chem., 2021, 10, 2418.
    DOI:https://doi.org/10.1002/ajoc.202100376
  27. Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence.
    Nishiuchi, T.; Sotome, H.; Fukuuchi, R.; Kamada, K.; Miyasaka, H.; Kubo, T.
    Aggregate, 2021, 2, e126.
    DOI:https://doi.org/10.1002/agt2.126
  28. Synthesis and Characterization of 1-Hydroxy-4,5-arene-Fused Tropylium Derivatives
    Kodama, T.; Kawashima, Y.; Uchida, K.; Deng, Z.; Tobisu, M.
    J. Org. Chem., 2021, 86, 13800–13807.
    DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
  29. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds
    Sheng, M.; Fujita, S.; Yamaguchi, S.; Yamasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    JACS Au, 2021, 1, 501–507.
    DOI:https://doi.org/10.1021/jacsau.1c00125
  30. A Nickel Phosphide Nanoalloy Catalyst for the C-3 Alkylation of Oxindoles with Alcohols
    Sheng, M.; Fujita, S,; Imagawa, K.; Yamaguchi, S.; Yamasaki, J.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    Sci. Rep., 2021, 11, 10673.
    DOI:https://doi.org/10.1038/s41598-021-89561-18
  31. A Copper Nitride Catalyst for the Efficient Hydroxylation of Aryl Halides under Ligand-free Conditions (Cover)
    Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T.
    Org. Biomol. Chem., 2021, 19, 6593–6597.
    DOI:https://doi.org/10.1039/D1OB00768H
  32. Efficient D-Xylose Hydrogenation to D-Xylitol over a Hydrotalcite-Supported Nickel Phosphide Nanoparticle Catalyst (Cover)
    Yamaguchi, S.; Mizugaki, T.; Mitsudome, T.
    Eur. J. Inorg. Chem., 2021, 2021, 3327–3331.
    DOI:https://doi.org/10.1002/ejic.202100432
  33. Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines (Cover)
    Sheng, M.; Yamaguchi, S.; Nakata, A.; Yamazoe, S.; Nakajima, K.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    ACS Sustainable Chemistry & Engineering, 2021, 9, 11238–11246.
    DOI:https://doi.org/10.1021/acssuschemeng.1c03667
  34. Synthesis and Catalytic Activity of Atrane-type Hard and Soft Lewis Superacids with a Silyl, Germyl, or Stannyl Cationic Center
    Tanaka, D.; Konishi, A.; Yasuda, M.
    Chem. Asian J., 2021, 16, 3118–3123.
    DOI:https://doi.org/10.1002/asia.202100873
  35. Synthesis and pyrolysis of fullerenol-stabilized Pt nanocolloids for unique approach to Pt-doped carbon
    Cabello, M. K. E.; Uetake, Y.; Yao, Y.; Kuwabata, S.; Sakurai, H.
    Chem. Asian J., 2021, 16, 2280–2285.
    DOI:https://doi.org/10.1002/asia.202100495
  36. Ruthenium-Catalyzed Isomerization of ortho-Silylanilines to Their Para Isomers
    Ishiga, W.; Ohta, M.; Kodama, T.; Tobisu, M.
    Org. Lett., 2021, 23, 6714–6718.
    DOI:https://doi.org/10.1021/acs.orglett.1c022800
  37. Nonfullerene acceptors for P3HT-based organic solar cells
    Chatterjee, S.; Jinnai, S.; Ie, Y.
    J. Mater. Chem. A, 2021, 9, 18857–18886.
    DOI:https://doi.org/10.1039/D1TA03219D
  38. Photoredox-Catalyzed C−F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position
    Sugihara, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M.
    J. Am. Chem. Soc., 2021, 143, 9308–9313.
    DOI:https://doi.org/10.1021/jacs.1c03760
  39. Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
    Kranthiraja, K,; Saeki, A.
    Adv. Funct. Mater., 2021, 31, 92011168.
    DOI:https://doi.org/10.1002/adfm.202011168
  40. Indium-catalyzed C–F Bond Transformation through Oxymetalation/β-fluorine Elimination to Access Fluorinated Isocoumarin
    Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M.
    Chem. Eur. J., 2021, 27, 8288–8294.
    DOI:https://doi.org/10.1002/chem.202100672
  41. Homologation of Alkyl Acetates, Alkyl Ethers, Acetals and Ketals by Formal Insertion of Diazo Compounds into a Carbon-Carbon Bond
    Wang, F.; Yi, J.; Nishimoto, Y.; Yasuda, M.
    Synthesis, 2021, 53, 4004–4019.
    DOI:https://doi.org/10.1055/a-1523-1551
  42. Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution
    Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S.
    Inorg. Chem., 2021, 60, 12634–12643.
    DOI:https://doi.org/10.1021/acs.inorgchem.1c01279
  43. A Quasi-stable Molybdenum Sub-oxide with Abundant Oxygen Vacancies that Promotes CO₂ Hydrogenation to Methanol
    Kuwahara, Y.; Mihogi, T.; Hamahara, K.; Kusu, K.; Kobayashi, H.; Yamashita, H.
    CHem. Sci., 2021, 12, 9902–9915.
    DOI:https://doi.org/10.1039/D1SC02550C
  44. Plasmon-induced Catalytic CO₂ Hydrogenation by a Nano-sheet Pt/HxMoO3−y Hybrid with Abundant Surface Oxygen Vacancies
    Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H.
    J. Mater. Chem. A, 2021, 9, 13898–13907.
    DOI:https://doi.org/10.1039/D1TA02277F
  45. Modification of Ti-doped Hematite Photoanode with Quasi-molecular Cocatalyst: A Comparison of Improvement Mechanism Between Non-noble and Noble Metals
    Wang, R.; Kuwahara, Y.; Mori, K.; Qian, X.; Zhao, Y.; Yamashita, H.
    ChemSusChem, 2021, 14, 2180–2187.
    DOI:https://doi.org/10.1002/cssc.202100451
  46. Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion
    Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T.
    J. Am. Chem. Soc., 2021, 143, 12590–12599.
    DOI:https://doi.org/10.1021/jacs.1c04622
  47. Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO₂ Reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka. S.; Matsuda. R.; Kondo. M.; Masaoka, S.
    Small, 2021, 17, 2006150.
    DOI:https://doi.org/10.1002/smll.202006150
  48. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO₂ hydrogenation
    Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H.
    Nature Commun., 2021, 12, 3884.
    DOI:https://doi.org/10.1038/s41467-021-24228-z
  49. Pyridine Ring Modification of Indane-1,3-dione Dimers for Controlof their Crystal Structure
    Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H.
    Asian J. Org. Chem., 2021, 10, 2690–2696.
    DOI:https://doi.org/10.1002/ajoc.202100275
  50. Two-step Conformational Control of a Dibenzo Diazacyclooctane Derivative by Stepwise Protonation
    Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A.
    Asian J. Org. Chem., 2021, 10, 1377–1381.
    DOI:https://doi.org/10.1002/ajoc.202100154
  51. The Dawn of Sumanene Chemistry: My Personal History with π-Figuration
    Sakurai, H.
    Bull. Chem. Soc. Jpn., 2021, 94, 1579–1587.
    DOI:https://doi.org/10.1246/bcsj.20210046
  52. Indium‐catalyzed C–F Bond Transformation through Oxymetalationβ‐fluorine Elimination to Access Fluorinated Isocoumarins
    Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M.
    Chem. - Eur. J., 2021, 27, 8288–8294.
    DOI:https://doi.org/10.1002/chem.202100672
  53. Quick and Easy Method for Drastic Improvement of the Electrochemical CO₂ Reduction Activity an Iron Porphyrin Complex
    Kosugi, K.; Kondo, M.; Masaoka, S.
    Angew. Chem. Int. Ed., 2021, 60, 22070–22074.
    DOI:http://dx.doi.org/10.1002/anie.202110190
  54. Fabrication of Function-Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes
    Iwami, H.; Kondo, M.; Masaoka, S.
    ChemElectroChem, 2021, 9, e202101363.
    DOI:https://doi.org/10.1002/celc.202101363
  55. Design of molecular water oxidation catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., 2021, 50, 6790–6831.
    DOI:https://doi.org/10.1039/D0CS01442G
  56. Support-boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki,T.; Mitsudome, T.
    ACS Sustainable chemistry & Engineering, 2021, 9, 6347–6354.
    DOI:https://doi.org/10.1021/acssuschemeng.1c00447
  57. Supported Cobalt Phosphide Nanoalloy Catalysts for Hydrogenation of Furfurals
    Ichikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizuguchi, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0432.
    DOI:https://doi.org/10.1055/s-0040-1706732
  58. Deoxygenation of Sulfoxides on Nano-Nickel Phosphide/Titania Catalyst
    Fujita, S.; Yamaguchi, S.; Yamazoe, S.; Yamasaki, S.; Mizugaki, T.; Mitsudome, T.
    Synfacts, 2021, 17, 0193.
    DOI:https://doi.org/10.1055/s-0040-1706651
  59. Synthesis of 4,5-Benzotropone π Complexes of Iron, Rhodium, and Iridium and Their Potential Use in Catalytic Borrowing-Hydrogen Reactions
    Kodama, T.; Kawashima, Y.; Deng, Z.; Tobisu, M.
    Inorg. Chem., 2021, 60, 4332–4336.
    DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
  60. Late-stage Derivatization of Buflavine by Nickel-catalyzed Direct Substitution of a Methoxy Group via C–O Bond Activation
    Shimazumi, R.; Morita, K.; Yoshida, T.; Yasui, K.; Tobisu, M.
    Synthesis, 2021, 53, 3037–3044. in press. (Special issue on Bond Activation in Honor of Prof. Shinji Murai)
    DOI:https://doi.org/10.1055/a-1467-2494
  61. Frontiers in water oxidation: Design, activity, and mechanism of molecular catalysts with earth-abundant metal ions
    Kondo, M.; Tatewaki, H.; Masaoka, S.
    Chem. Soc. Rev., in press.
  62. Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction
    Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S.
    Small, 2021, 17, 2006150.
    DOI:https://doi.org/10.1002/smll.202006150
  63. Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide
    Nakao, S.; Nishimoto, Y.; Yasuda M.
    Chem. Lett. 2021, 350, 538–541.
    DOI:https://doi.org/10.1246/cl.200894
  64. N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of N-Arylacrylamides via the Cleavage of Unactivated C(aryl)–N Bonds
    Yasui, K.; Kamitani, M.; Fujimoto, H.; Tobisu, M.
    Org. Lett. 2021, 23, 1572–1576.
    DOI:https://pubs.acs.org/doi/10.1021/acs.orglett.0c04281
  65. Volcano-Type Correlation between Particle Size and Catalytic Activity on Hydrodechlorination Catalyzed by AuPd Nanoalloy
    Uetake, Y.; Mouri, S.; Haesuwannakij, S.; Okumura, K.; Sakurai H.
    Nanoscale Adv. 2021, 3, 1496–1501.
    DOI:https://doi.org/10.1039/D0NA00951B
  66. Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
    Kranthiraja, K.; Saeki, A.
    Adv. Funct. Mater. 2021, 31, 2011168.
    DOI:https://doi.org/10.1002/adfm.202011168
  67. H2-Free Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
    Yamaguchi, S.; Kondo, H.; Uesugi, K.; Sakoda, K.; Jitsukawa, K.; Mitsudome, T.; Mizugaki, T.
    ChemCatChem 2021, 13, 1135–1139.
    DOI:https://doi.org/10.1002/cctc.202001866
  68. Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
    Fujita, S.; Yamaguchi, S.; Yanasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T.
    Chem. Eur. J. 2021, 27, 4439–4446.
    DOI:https://doi.org/10.1002/chem.202005037
  69. Air-stable and reusable nickel phosphide nanoalloy catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol
    Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.
    Green Chem. 2021, 23, 2010–2016.
    DOI:https://doi.org/10.1039/D0GC03301D
  70. Stabilization of Charge-Transfer States in Pentacene Crystal and Its Role in Singlet Fission
    Nagami, T; Miyamoto, H.; Sakai, R.; Nakano, M.
    J. Phys. Chem. C 2021, 125, 2264–2275.
    DOI:https://doi.org/10.1021/acs.jpcc.0c10029
    Supplementary Cover
    https://pubs.acs.org/pb-assets/images/_journalCovers/jpccck/jpccck_v125i004-2.jpg?0.0397094469789554
  71. Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
    Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S.
    Angew. Chem. Int. Ed. 2021, 60, 5965–5969.
    DOI:https://doi.org/10.1002/anie.202015174
  72. Pd-Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO2 to Formate (表Cover)
    Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H.
    J. Phys. Chem. C 2021, 125, 3961–3971.
    DOI:https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10962
  73. (o‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
    Suzuki, K. Nishimoto, Y.; Yasuda, M.
    Chem. –Eur. J. 2021, 27, 3968–3973.
    DOI:https://doi.org/10.1002/chem.202004692

2020年

  1. Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification
    Chutimasakul, T.; Uetake, Y.; Tantirungrotechai, J.; Asoh, T.; Uyama, H.; Sakurai H.
    ACS Omega 2020, 5, 33206–33213.
    DOI:https://pubs.acs.org/doi/abs/10.1021/acsomega.0c04894
  2. Nickel-Catalyzed Decarbonylation of Acylsilanes
    Ito, Y.; Nakatani, S.; Kodama, T.; Tobisu, M.
    J. Org. Chem. 2020, 85, 7588–7594.
    DOI:http://dx.doi.org/10.1021/acs.joc.0c00772