Stereoselective Preparation and Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkenyl Sulfoximines
Yasui, K.; Tomishima, Y.; Miura, T.; Yamazaki, K.; Hirano, K. Angew. Chem. Int. Ed.,2025, 64, e202420949.
DOI:https://doi.org/https://doi.org/10.1002/anie.202420949
Synthesis and Characterization of Zirconium-Oxide-Based Catalysts for the Oxygen Reduction Reaction via the Heat Treatment of Zirconium Polyacrylate in an Ammonia Atmosphere
Ueno, A.; Seino, S.; Tamaki, Y.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T. J. Mater. Sci.,2025, 60, 2774–2785.
DOI:https://doi.org/https://link.springer.com/article/10.1007/s10853-025-10620-3
Synthesis, Chiroptical Properties, and Absolute Configuration Determination of Phenyl-4-pyridyl-2,5-dipyrimidinylmethane
Matsumoto, K.; Tanaka, R.; Miki, K.; Konishi, A.; Kurata, H.; Kubo, T.; Pescitelli, G.; Matsuo, K.; Nehira, T. Asian J. Org. Chem.,2025, 14, e202400577.
DOI:https://doi.org/https://doi.org/10.1002/ajoc.202400577
Reductive amination of triglycerides to fatty amines over a titanium oxide-supported Pt–Mo catalyst
Sakoda, K.; Furugaki, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Org. Biomol. Chem.,2025, 23, 2638–2644.
DOI:https://doi.org/http://doi.org/10.1039/d4ob01843e
Nickel-Catalyzed Synthesis of Silaindanes via Sequential C–H Activating 1,5-Nickel Migration and C–Si Activating 1,4-Nickel Migration
Lee, D.; Fujii, I.; Shintani, R. ACS Catal.,2025, 15, 907–916.
DOI:https://doi.org/https://doi.org/10.1021/acscatal.4c06910
Synthesis and Characterization of an Air-Stable Tin(IV) β-Tetracyanoisophlorin Complex: Enhanced Antiaromaticity through Metal Complexation
Sugimura, H.; Nakajima, K.; Yamashita, K. Asian J. Org. Chem.,2025, 14, e202400550.
DOI:https://doi.org/https://doi.org/10.1002/ajoc.202400550
Multihalogenated Zn Phthalocyanine as a Precursor for Porous Zn-N4-C Carbons toward Electrocatalytic Oxygen Reduction
Sakamoto, K. Shiraishi, Y.; Kinoshita, K.; Yoshida, K.; Hiramatsu, W.; Hirai, T. Chem. Commun.,2025, 61, 1371–1374.
DOI:https://doi.org/https://doi.org/10.1039/d4cc05813e
Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction
Hiramatsu, W.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Kawada, Y.; Hiraiwa, C.; Hirai, T. J. Am. Chem. Soc.,2025, 147, 1968–1979.
DOI:https://doi.org/https://doi.org/10.1021/jacs.4c14804
Stacked-ring aromaticity from the viewpoint of the effective number of π-electrons
Sugimori, R; Okada, K; Kishi, R; Kitagawa, Y Chem. Sci,2025, 16, 1707–1715.
DOI:https://doi.org/https://doi.org/10.1039/D4SC07123A
Protonation/deprotonation-driven switch for the redox stability of low potential [4Fe-4S] ferredoxin
Wada, K; Kobayashi, K; Era, I; Isobe, Y; Kamimura, T; Marukawa, M; Nagae, T; Honjo, K; Kaseda, N; Motoyama, Y; Inoue, K; Sugishima, M; Kusaka, K; Yano, N; Fukuyama, K; Mishima, M; Kitagawa, Y; Unno, M eLife,2025, 13, RP102506.
DOI:https://doi.org/https://doi.org/10.7554/eLife.102506.2
Direct synthesis of spirobifluorenes by formal dehydrative coupling of biaryls and fluorenones
Kato, Y.; Nishimura, K.; YNishii, Y.; Hirano, K. Chem. Sci.,2024, 15, 2112–2117.
DOI:https://doi.org/https://doi.org/10.1039/D3SC05977D
Direct Synthesis of Benzoselenophene and Benzothiophene Derivatives from 1,1-Diarylethenes and Biaryls by Chalcogen Cation-Mediated Successive Bond Formation
Iwamoto, H.; Kojima, Y.; Nishimura, K.; Yasui, K.; Hirano, K. Org. Lett.,2024, 26, 1006–1010.
DOI:https://doi.org/https://doi.org/10.1021/acs.orglett.3c04033
Tunable Mechanochromic Luminescence of Benzofuran-Fused Pyrazine: Effects of Alkyl Chain Length and Branching Pattern
Nakamura, S.; Okubo, K.; Nishii, Y.; Hirano, K.; Tohnai, N.; Miura, M. J. Mater. Chem. C,2024, 12, 2370–2378.
DOI:https://doi.org/https://doi.org/10.1039/D3TC04748B
Controlled Photoinduced Electron Transfer via Triplet in Polymer Matrix Using Electrostatic Interactions
Cao, Y.; Sotome, H.; Kobayashi, Y.; Ito, S.; Yamaguchi, H. J. Photochem. Photobiol. A,2024, 452, 115593.
DOI:https://doi.org/https://doi.org/10.1016/j.jphotochem.2024.115593
Control of sulfur number in sulfur-containing compounds: The effect of base type, equivalent of the base, and reaction solvent in synthesizing linear sulfur
Nishimura, R.; Kobayashi, Y.; Kamioka, R.; Hashimoto, S.; Yamaguchi, H Chem. Lett.,2024, 53, upae105.
DOI:https://doi.org/https://doi.org/10.1093/chemle/upae105
Amplification sensing manipulated by a sumanene-based supramolecular polymer as a dynamic allosteric effector
Mizuno, H.; Nakazawa, H.; Miyagawa, A.; Yakiyama, Y.; Sakurai, H.; Fukuhara, G. Sci. Rep.,2024, 14, 12534.
DOI:https://doi.org/https://doi.org/10.1038/s41598-024-63304-4
Dehydrogenative Oxidation of Hydrosilanes Using Gold Nanoparticle Deposited on Citric Acid-Modified Fibrillated Cellulose: Unveiling the Effect of Molecular Oxygen
Suwattananuruk, B.; Uetake, Y.; Ichikawa, R.; Toyoshima, R.; Kondoh, H.; Sakurai, H. Nanoscale,2024, 16, 12474–12481.
DOI:https://doi.org/https://doi.org/10.1039/D4NR01184H
Sumanene–carbazole conjugate with push–pull structure and its chemoreceptor application
Ufnal, D.; Cyniak, J. S.; Krzyżanowski, M.; Durka, K.; Sakurai, H.; Kasprzak, A. Org. Biomol. Chem.,2024, 22, 5117–5126.
DOI:https://doi.org/https://doi.org/10.1039/D4OB00539B
Strain-induced carbon-carbon bond cleavage of bowl-shaped sumanenone
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Chem. Commun.,2024, 60, 3982–3985.
DOI:https://doi.org/https://doi.org/10.1039/d4cc00008k
Reversible Modulation of the Local Environment around Metal Centers Bearing Multifunctional Carbenes
Yamauchi, Y.; Ogoshi, S.; Uetake, Y.; Hoshimoto, Y. Chem. Lett.,2024, 53, upae042.
DOI:https://doi.org/https://doi.org/10.1093/chemle/upae042
Biased Bowl-Direction of Monofluorosumanene in the Solid State
Yakiyama, Y.; Li, M.; Zhou, D.; Abe, T.; Sato, C.; Sambe, K.; Akutagawa, T.; Matsumura, T.; Matubayasi, N.; Sakurai, H. J. Am. Chem. Soc.,2024, 146, 5224–5231.
DOI:https://doi.org/https://doi.org/10.1021/jacs.3c11311
Expanding the library of sumanene molecular receptors for caesium-selective potentiometric sensors
Ażgin, J.; Wesoły, M.; Durka, K.; Sakurai, H.; Wróblewski, W.; Kasprzak, A. Dalton Trans.,2024, 53, 2964–2972.
DOI:https://doi.org/https://doi.org/10.1039/D3DT03885H
Mechanistic Study in Gold Nanoparticle Synthesis through Microchip Laser Ablation in Organic Solvents
Hettiarachchi, B. S.; Takaoka, Y.; Uetake, Y.; Yakiyama, Y.; Yoshikawa, H. Y.; Maruyama, M.; Sakurai, H. Metals,2024, 14, 155.
DOI:https://doi.org/https://doi.org/10.3390/met14020155
Uncovering gold nanoparticle synthesis using a microchip laser system through pulsed laser ablation in aqueous solution
Hettiarachchi, B. S.; Takaoka, Y.; Uetake, Y.; Yakiyama, Y.; Lim, H. H.; Taira, T.; Maruyama, M.; Mori, Y.; Yoshikawa, H. Y.; Sakurai, H. Ind. Chem. Mater.,2024, 2, 340–347.
DOI:https://doi.org/https://doi.org/10.1039/D3IM00090G
Oxidation-derived anticancer potential of sumanene-ferrocene conjugates
Kasprzak, A.; Zuchowska, A.; Romanczuk, P.; Kowalczyk, A.; Grudzinski, I. P.; Malkowska, A.; Nowicka, A. M.; Sakurai, H. Dalton Trans.,2024, 53, 56–64.
DOI:https://doi.org/https://doi.org/10.1039/d3dt03810f
Fast, efficient, narrowband room-temperature phosphorescence from metal-free 1,2-diketones: rational design and the mechanism
Tani, Y.; Miyata, K.; Ou, E.; Oshima, Y.; Komura, M.; Terasaki, M.; Kimura, S.; Ehara, T.; Kubo, K.; Onda, K.; Ogawa, T. Chem. Sci.,2024, 15, 10784–10793.
DOI:https://doi.org/https://doi.org/10.1039/D4SC02841D
True location of insulating byproducts in discharge deposits in Li–O2 batteries
Nishioka, K.; Weintraut, T.; Schröder, S.; Henss, A.; Nakanishi,S. ACS Appl. Energy Mater.,2024, 8, 3443–3451.
DOI:https://doi.org/https://doi.org/10.1021/acsaem.4c00202
Quantitative assessment for the disproportionation reaction of HCHO formed during CO and CO2 electrolysis
Nishijima, H.; Inoue, A.; Harada, H.; Kamiya, K.; Nakanishi, S. Electrochemistry,2024, 5, 57005.
DOI:https://doi.org/https://doi.org/10.5796/electrochemistry.24-00041
Developing a design guideline of boronic acid derivatives to scavenge targeted sugars in the formose reaction products using DFT-based machine learning
Ishihara, N.; Chikatani, G.; Nishijima, H.; Tabata, H.; Hase, Y.; Mukouyama, Y.; Nakanishi, S.; Mukaida, S. Chem. Lett.,2024, 6, upae087.
DOI:https://doi.org/https://doi.org/10.1093/chemle/upae087
Quantitative analysis and manipulation of alkali metal cations at the cathode surface in membrane electrode assembly electrolyzers for CO2 reduction reactions
Kato, S.; Ito, S.; Nakahata, S.; Kurihara, R.; Harada, T.; Nakanishi, S.; Kamiya, K. ChemSucChem,2024, , e202401013.
DOI:https://doi.org/https://doi.org/10.1002/cssc.202401013
Electrochemical monitoring of metabolic activity of methane/methanol conversing methylococcus capsulatus (bath) cells based on extracellular electron transfer
Sugimoto, S.; Hori, K.; Ishikawa,M.; Ito, H.; Kamachi, T.; Tanaka, K.; Chen, Y.Y.; Nakanishi, S. Electrochemistry,2024, 2, 22007.
DOI:https://doi.org/https://doi.org/10.5796/electrochemistry.23-68120
Microbial biomanufacturing using chemically synthesized non-natural sugars as the substrate
Tabata, H.; Nishijima, H.; Yamada, Y.; Miyake, R.; Yamamoto, K.; Kato, S.; Nakanishi, S. ChemBioChem,2024, 2, e202300760.
DOI:https://doi.org/https://doi.org/10.1002/cbic.202300760
CO hydrogenation promoted by oxygen atoms adsorbed onto Cu(100)
Nagita, K.; Kamiya, K.; Nakanishi, S.; Hamamoto, Y.; Morikawa, Y. J. Phys. Chem. C,2024, 11, 4607–4615.
DOI:https://doi.org/https://doi.org/10.1021/acs.jpcc.4c00666
C−C coupling in CO2 electroreduction on single Cu-modified covalent triazine frameworks: A static and dynamic density functional theory study
Ohashi, K.; Nagita, K.; Yamamoto, H.; Nakanishi, S.; Kamiya, K. ChemElectroChem,2024, 6, e202300693.
DOI:https://doi.org/https://doi.org/10.1002/celc.202300693
Light wavelength as a contributory factor of environmental fitness in the cyanobacterial circadian clock
Kawamoto, N.; Nakanishi, S.; Shimakawa, G. Plant and Cell Physiology,2024, 5, 798–808.
DOI:https://doi.org/https://doi.org/10.1093/pcp/pcae022
Cu(II) detection by a fluorometric probe based on thiazoline-amidoquinoline derivative and its application to water and food samples
Paisuwan, W.; Srithadindang, K.; Kodama, T.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A. Spectrochim. Acta - A: Mol. Biomol. Spectrosc.,2024, 322, 124706.
DOI:https://doi.org/https://doi.org/10.1016/j.saa.2024.124706
Dehydrosilylation of Alcohols Using Gold Nanoparticles Deposited on Citric Acid-modified Fibrillated Cellulose
Suwattananuruk, B.; Uetake, Y.; Sakurai, H. Synlett,2024, 35, 2417–2422.
DOI:https://doi.org/https://doi.org/10.1055/a-2379-9191
Controlled degradation of chemically stable poly(aryl ethers) via directing group-assisted catalysis
Ogawa, S.; Morita, H.; Hsu, Y.-I; Uyama, H.; Tobisu, M. Chem. Sci.,2024, 15, 17556–17561.
DOI:https://doi.org/https://doi.org/10.1039/D4SC04147JJ
Carrier Doping in Semiconducting Carbon Nanotubes with Fluorosumanenes
Uchiyama, H.; Nakano, T. Yakiyama, Y.; Sakurai, H.; Gao, Y.; Maruyama, M.; Okada, S.; Kataura, H.; Ohno, Y. J. Phys. Chem. C,2024, 128, 17668–17673.
DOI:https://doi.org/https://doi.org/10.1021/acs.jpcc.4c04543
Exceptionally Short Tetracoordinated Carbon–Halogen Bonds in Hexafluorodihalocubanes
Sugiyama, M.; Uetake, Y.; Miyagi, N.; Yoshida, M.; Nozaki, K.; Okazoe, T.; Akiyama, M. J. Am. Chem. Soc.,2024, 146, 30686–30697.
DOI:https://doi.org/https://doi.org/10.1021/jacs.4c12732
Synthesis and Characterization of Titanium Oxynitride Catalyst via Direct Ammonia Nitridation of Titanium Polyacrylate for Oxygen Reduction Reaction
Tamaki, Y.; Seino, S.; Shinyoshi, N.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T. J. Mater. Sci.: Mater. Eng.,2024, 19, 40.
DOI:https://doi.org/https://doi.org/10.1186/s40712-024-00189-1
Red-light Emitting Orthogonally Trireactive GoldNanoclusters for the Synthesis of MultifunctionalizedNanomaterials
Watanabe, K.; Uetake, Y.; Hata, M.; Kuwano, A.; Yamamoto, R.; Yamamoto, Y.; Kodera, M.; Kitagishi, H.; Niwa, T.; Hosoya, T. Small,2024, , 2408747.
DOI:https://doi.org/https://doi.org/10.1002/smll.202408747
Generation of Nickel Siloxycarbene Complexes from Acylsilanes for the Catalytic Synthesis of Silyl Enol Ethers
Matsuura, A. ; Ito, Y.; Inagaki, T.; Kodama, T.; Tobisu, M. ACS Catal.,2024, 14, 18216–18222.
DOI:https://doi.org/https://pubs.acs.org/doi/10.1021/acscatal.4c06272
A Nickel Metalloradical Bearing a Phenalenyl-Based Tridentate Ligand
Noguchi, H.; Kodama, T.; Kikkawa, S.; Yamazoe, S.; Tobisu, M. Chem. Lett.,2024, 53, upae236.
DOI:https://doi.org/https://doi.org/10.1093/chemle/upae236
Synthesis of highly condensed phospholes by Lewis acid-assisted dehydrogenative Mallory reaction under visible light irradiation
Kamiyoshi, I.; Kojima, Y.; Xu, S.; Yasui, K.; Nishii, Y.; Hirano, K. Chem. Sci.,2024, 15, 20413–20420.
DOI:https://doi.org/https://doi.org/10.1039/D4SC05657D
Trivalent Metal Chloride Doping for Interfacial Passivation and Enhanced Charge Transfer in Wide Bandgap Perovskite Solar Cells
Park, Y.; Nishikubo, R.; Pylnev, M.; Shimomura, R.; Saeki, A. ACS Appl. Energy Mater.,2024, 7, 11818–11826.
DOI:https://doi.org/https://doi.org/10.1021/acsaem.4c02157
Performance Boost by Dark Electro Treatment in MACl-Added FAPbI3 Perovskite Solar Cells
Pylnev, M.; Nishikubo, R.; Ishiwari, F.; Wakamiya, A.; Saeki, A. Adv. Opt. Mater.,2024, 12, 2401902.
DOI:https://doi.org/https://doi.org/10.1002/adom.202401902
Molecular models of PM6 for non-fullerene acceptor organic solar cells: How DAD and ADA structures impact charge separation and charge recombination
Pananusorn, P.; Sotome, H.; Uratani, H.; Ishiwari, F.; Phomphrai, K.; Saeki, A. J. Chem. Phys.,2024, 161, 184710.
DOI:https://doi.org/https://doi.org/10.1063/5.0227785
Chiral bifacial indacenodithiophene-based π-conjugated polymers with chirality-induced spin selectivity
Li, S.; Ishiwari, F.; Zorn, S.; Murotani, K.; Pylnev, M.; Taniguchi, K.; Saeki, A. Chem. Commun.,2024, 60, 10870–10873.
DOI:https://doi.org/https://doi.org/10.1039/d4cc03292f
Evolving bifacial molecule strategy for surface passivation of lead halide perovskite solar cells
N. Minoi, F. Ishiwari, T. Omine, K. Murotani, R. Nishikubo, A. Saeki Sustainable Energy Fuels,2024, 8, 4453–4460.
DOI:https://doi.org/https://doi.org/10.1039/d4se01096e
Sequential Deposition of Diluted Aqueous SnO2 Dispersion for Perovskite Solar Cells
Pylnev, M.; Nishikubo, R.; Ishiwari, F.; Wakamiya, A.; Saeki, A. Solar RRL,2024, 8, 2400415.
DOI:https://doi.org/https://doi.org/10.1002/solr.202400415
Combined Charge Extraction by Linearly Increasing Voltage and Time-Resolved Microwave Conductivity to Reveal the Dynamic Charge Carrier Mobilities in Thin-Film Organic Solar Cells
Li, S.; Nishikubo, R.; Saeki, A. ACS Omega,2024, 9, 26951–26962.
DOI:https://doi.org/https://doi.org/10.1021/acsomega.3c09977
Wavelength-Recognizable SbSI:Sb2S3 Photovoltaic Devices: Elucidation of the Mechanism and Modulation of their Characteristics
Kobayashi, T.; Nishikubo, R.; Chen, Y.; Marumoto, K.; Saeki, A. Adv. Funct. Mater.,2024, 34, 2311794.
DOI:https://doi.org/https://doi.org/10.1002/adfm.202311794
Triammonium Molecular Tripods as Organic Building Blocks for Hybrid Perovskite Solar Cells
Fukui, T.; Hofuku, K.; Kosaka, A.; Minoi, N.; Nishikubo, R.; Ishiwari, F.; Sato, H.; Saeki, A.; Fukushima, T. Small Struct.,2024, 5, 2300411.
DOI:https://doi.org/https://doi.org/10.1002/sstr.202300411
On‐Surface Synthesis of Silole and Disila‐Cyclooctene Derivatives
Sun, K.; Kurki, L.; Silveira, O. J.; Nishiuchi, T.; Kubo, T.; Foster, A. S.; Kawai, S. Angew. Chem. Int. Ed.,2024, 63, e202401027.
DOI:https://doi.org/https://doi.org/10.1002/anie.202401027
Synthesis and reactivity of the di(9-anthryl)methyl radical
Nishiuchi, T.; Takahashi, K.; Makihara, Y.; Kubo, T. Beilstein J. Org. Chem.,2024, 20, 2254–2260.
DOI:https://doi.org/https://doi.org/10.3762/bjoc.20.193
Highly Active and Sulfur-tolerant Ruthenium Phosphide Catalyst for Efficient Reductive Amination of Carbonyl Compounds
Ishikawa, H.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal.,2024, 14, 4501–4509.
DOI:https://doi.org/http://doi.org/10.1021/acscatal.3c06179
Reductive amination of carboxylic acids under H2 using a heterogeneous Pt–Mo catalyst
Sakoda, K.; Yamaguchi, S.; Honjo, K.; Kitagawa, Y.; Mitsudome, T.; Mizugaki, T. Green Chem.,2024, 26, 2571–2576.
DOI:https://doi.org/http://doi.org/10.1039/D3GC02155F
Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Synlett,2024, 35, 1296–1300.
DOI:https://doi.org/http://doi.org/10.1055/a-2191-5906
Nickel Carbide Nanoparticle Catalyst for Selective Hydrogenation of Nitriles to Primary Amines
Yamaguchi, S.; Kiyohira, D.; Tada, K.; Kawakami, T.; Miura, A.; Mitsudome, T.; Mizugaki, T. Chem Eur J.,2024, 1, e202303573 (1 of 7)..
DOI:https://doi.org/http://doi.org/10.1002/chem.202303573
Synthesis of Fused Oligosiloles by Rhodium-catalyzed Stitching Reaction and Subsequent Remote Conjugate Dehydration
Morita, M.; Shintani, R. Chem. Lett.,2024, 53, upae068.
DOI:https://doi.org/https://doi.org/10.1093/chemle/upae068
Synthesis of (1-silyl)allylboronates by KOtBu-catalyzed ring-opening gem-silylborylation of cyclopropenes
Fujii, I.; Hirata, H.; Moniwa, H.; Shintani, R. Chem. Commun.,2024, 60, 6921–6924.
DOI:https://doi.org/https://doi.org/10.1039/D4CC01336K
Absorption of water molecules on the surface of stereocomplex-crystal spherulites of polylactides: An in-situ FT-IR spectroscopy investigation
Kokuzawa, T.; Hirabayashi, S.; Ikemoto, Y.; Park, J.; Ikura, R.; Takashima, Y.; Higuchi, Y.; Matsuba, G. Polymer,2024, 298, 126922–126922.
DOI:https://doi.org/https://doi.org/10.1016/j.polymer.2024.126922
Improvement in Cohesive Properties of Adhesion Systems Using Movable Cross-Linked Materials with Stress Relaxation Properties
Qian, Y.; Ikura, R.; Kawai, Y.; PARK, J.; Yamaoka, K.; Takashima, Y. ACS Applied Materials & Interfaces,2024, 16, 3935–3943.
DOI:https://doi.org/https://doi.org/10.1021/acsami.3c13342
Recyclable Tough Adhesive Sheets with Movable Cross-Links for Sustainable Use
Kosaba, S.; Ikura, R.; Yamaoka, K.; Arai, T.; Takashima, Y. ACS Applied Materials & Interfaces,2024, 16, 25393–25403.
DOI:https://doi.org/https://doi.org/10.1021/acsami.4c03806
Multiscale characterization and design of cellulose composites based on polymers with movable cross-links
Fujiwara, Y.; Luo, C.; Ikura, R.; Takashima, Y.; Uetsuji, Y. Polymer,2024, 291, 126603–126603.
DOI:https://doi.org/https://doi.org/10.1016/j.polymer.2023.126603
Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes
Yamaoka, K.; Ikura, R.; Osaki, M.; Shirakawa, H.; Takahashi, K.; Takahashi, H.; Ohashi, Y.; Takashima, Y. Polym. J,2024, 56, 1031–1039.
DOI:https://doi.org/https://doi.org/10.1038/s41428-024-00932-7
Relation between the Water Content and Mechanical Properties of Hydrogels with Movable Cross-Links
Nishida, K.; Ikura, R.; Yamaoka, K.; Urakawa, O.; Konishi, T.; Inoue, T.; Matsuba, G.; Tanaka, M.; Takashima, Y. Macromolecules,2024, 57, 7745–7754.
DOI:https://doi.org/https://doi.org/10.1021/acs.macromol.4c00732
Reinforcement and Controlling the Stability of Poly(ε-caprolactone)-Based Polymeric Materials via Reversible and Movable Cross-Links Employing Cyclic Polyphenylene Sulfide
Ding, Y.; Ikura, R.; Yamaoka, K.; Nishida, K.; Sugawara, A.; Uyama, H.; Nara, S.; Takashima, Y. ACS Macro Letters,2024, 13, 1265–1271.
DOI:https://doi.org/https://doi.org/10.1021/acsmacrolett.4c00495
Mechanical properties and molecular adhesion exhibited by inorganic–organic composite elastomers
Yamashita, N.; Ikura, R.; Yamaoka, K.; Kato, N.; Kamei, M.; Ogura, K.; Igarashi, M.; Nakagawa, H.; Takashima, Y. Polymer Chemistry,2024, 15, 4196–4203.
DOI:https://doi.org/DOIhttps://doi.org/10.1039/D4PY00879K
Exploring enzymatic degradation, reinforcement, recycling, and upcycling of poly(ester)s-poly(urethane) with movable crosslinks
Liu, J.; Ikura, R.; Yamaoka, K.; Sugawara, A.; Takahashi, Yuya.; Kure, B.; Takenaka, N.; Park, Junsu.; Uyama, H.; Takashima, Y. Chem,2025, , 102327–102327.
DOI:https://doi.org/https://doi.org/10.1016/j.chempr.2024.09.026
Heterogeneous Tandem Catalysis Strategy for Additive-free CO2 Hydrogenation into Formic Acid in Water: Crystal Plane Effect of Co3O4 Cocatalyst
Mori, K; Shinogi, J; Shimada, Y; Yamashita, H ACS Catal.,2024, 14, 18861–18871.
DOI:https://doi.org/https://doi.org/10.1021/acscatal.4c05484
Entropy-Stabilized Isolated Active Pd Species within a High-Entropy Fluorite Oxide Matrix for CO2 Hydrogenation to Formic Acid
Mori, K; Shimada, Y; Yoshida, H; Hinuma, Y; Yamashita, H ACS Applied Nano Materials,2024, 7, 28649–28658.
DOI:https://doi.org/https://doi.org/10.1021/acsanm.4c05908
Heteroatom Doping Enables Hydrogen Spillover via H+/e− Diffusion Pathways on a Non-reducible Metal Oxide
Shun, K; Mori, K; Kidawara, T; Ichikawa, S; Yamashita, H Nature Communications,2024, 15, 6403.
DOI:https://doi.org/https://doi.org/10.1038/s41467-024-50217-z
Two-phase reaction system for efficient photocatalytic production of hydrogen peroxide
Zhao, Y; Kondo, Y; Kuwahara, Y; Mori, K: Yamashita, H. Applied Catalysis B: Environment and Energy,2024, 351, 123945.
DOI:https://doi.org/https://doi.org/10.1016/j.apcatb.2024.123945
Specific Hydrogen Spillover Pathways Generated on Graphene Oxide Enabling the Formation of Non-Equilibrium Alloy Nanoparticle
Shun, K; Matsukawa, S; Ichikawa, S; Yamashita, H Small,2024, 20, 2306765.
DOI:https://doi.org/https://doi.org/10.1002/smll.202306765
Thermal Stability of High-Entropy Alloy Nanoparticles Evaluated by In Situ TEM Observations
Hashimoto, N.; Mori, K.; Yoshida, H.; Kamiuchi, N.; Kitaura, R.; Hirasawa, R.; Yamashita, H. Nano Letters,2024, 24, 7063–70638.
DOI:https://doi.org/https://doi.org/10.1021/acs.nanolett.4c01625
Advances in Metal 3D Printing Technology for Tailored Self-Catalytic Reactor Design
Kim, H.-J.; Mori, K.; Nakano, T.; Yamashita, H ChemCatChem,2024, 16, e202301380.
DOI:https://doi.org/https://doi.org/10.1002/cctc.202301380
Effect of oxygen vacancies and crystal phases in defective Pt/ZrO2-x on its photocatalytic activity toward hydrogen production
Yamazaki, Y.; Doshita, N.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H. Catalysis Science & Technology,2024, 14, 397–404.
DOI:https://doi.org/https://doi.org/10.1039/D3CY01470C
Nonfullerene Acceptors Bearing Spiro-Substituted Bithiophene Units in Organic Solar Cells: Tuning the Frontier Molecular Orbital Distribution to Reduce Exciton Binding Energy
Wang, K.; Jinnai, S.; Urakami, T.; Sato, H.; Higashi, M.; Tsujimura, S.; Kobori, Y.; Adachi, R.; Yamakata, A.; Ie, Y. Angew. Chem. Int. Ed.,2024, 63, e202412691.
DOI:https://doi.org/https://doi.org/10.1002/anie.202412691
A Dibenzo[g,p]chrysene‐Based Organic Semiconductor with Small Exciton Binding Energy via Molecular Aggregation
Mori, H.; Jinnai, S.; Hosoda, Y.; Muraoka, A.; Nakayama, K.; Saeki, A.; Ie, Y. Angew. Chem. Int. Ed.,2024, 63, e202409964.
DOI:https://doi.org/https://doi.org/10.1002/anie.202409964
Green-light wavelength-selective organic solar cells: module fabrication and crop evaluation towards agrivoltaics
Chatterjee, S.; Shimohara, N.; Seo, T.; Jinnai, S.; Moriyama, T.; Saida, M.; Omote, K.; Hara, K.; Iimuro, Y.; Watanabe, Y.; Ie, Y. Mater. Today Energy,2024, 45, 101673.
DOI:https://doi.org/https://doi.org/10.1016/j.mtener.2024.101673
Electrocatalyric Oxygen Reduction on Nitrogen-Doped Porous Carbon Spheres Prepared with Resorcinol-Phenolsulfonic Acid-Formaldehyde Mixed Resins
Sakamoto, K.; Kinoshita, K.; Shiraishi, Y.; Yoshida, K.; Hiramatsu, W.; Tanaka, S. Hirai, T. Chem. Lett.,2024, 53, upae215.
DOI:https://doi.org/https://doi.org/10.1093/chemle/upae215
Theoretical study on the open-shell electronic structure and electron conductivity of [18]annulene as a molecular parallel circuit model
Amamizu, N.; Nishida, M.; Sasaki, K.; Kishi, R.; Kitagawa, Y. Nanomaterials,2024, 14, 98.
DOI:https://doi.org/https://doi.org/10.3390/nano14010098
Theoretical Study on Molecular Charge Populations of One-Dimensional π-Stacked Multimers in Neutral and Electron Oxidation States
Yoshida, W; Shigeta, Y; Matsui, H; Miyamoto, H; Kishi, R; Kitagawa, Y Bull. Chem. Soc. Jpn.,2024, 97, uoae009.
DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae009
A Triply Linked Porphyrin−Norcorrole Hybrid with Singlet Diradical Character
Wang, K; Ito, S; Ren, S; Shimizu, D;Fukui, N; Kishi, R;Liu, Qiang; Osuka, A; Song, J; Shinokubo, H Angew. Chem. Int. Ed.,2024, 63, e202401233.
DOI:https://doi.org/https://doi.org/10.1002/anie.202401233
Theoretical Study on Open-Shell Electronic Structures of Through-Bond/Through-Space Hybrid Conjugated Ladder Graphs
Yoshida, W; Miyamoto, H; Shoda, J; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y Chem. Phys. Lett.,2024, 842, 141196.
DOI:https://doi.org/https://doi.org/10.1016/j.cplett.2024.141196
Homochiral and Heterochiral Self-Sorting Assemblies of Antiaromatic Ni(II) Norcorrole Dimers
Liu, S; Li, S; Ukai, S; Nozawa, R; Fukui, N; Sugimori, R; Kishi, R; Shinokubo, H Chem. Eur. J.,2024, 30, e202400292.
DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
Theoretical study on the correlation between open-shell electronic structures and third-order nonlinear optical properties in one-dimensional chains of π-radicals
Shoda, J; Yokoyama, M; Yoshida, W; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y J. Phys. Chem. A,2024, 128, 8473–8482.
DOI:https://doi.org/https://doi.org/10.1021/acs.jpca.4c05200
Bowl-Shaped Anthracene-Fused Antiaromatic Ni(II) Norcorrole: Synthesis, Structure, Assembly with C60, and Photothermal Conversion
Wang, K; Ghosh, A; Shimizu, D; Takano, H; Ishida, M; Kishi, R; Shinokubo, H Angew. Chem. Int. Ed.,2024, , e202419289.
DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
Theoretical Study on One- and Two-Photon Absorption Properties of π-Stacked Multimer Models of Phenalenyl Radicals
Yokoyama, M; Kishi, R; Kitagawa, Y Chemistry,2024, 6, 1427–1438.
DOI:https://doi.org/https://doi.org/10.3390/chemistry6060085
Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models
Miyamoto, H; Okada, K; Tada, K; Kishi, R; Kitagawa, Y Molecules,2024, 29, 5449.
DOI:https://doi.org/https://doi.org/10.3390/molecules29225449
Theoretical Study on Stacking Distance Dependence of One- and Two-Photon Absorption Properties of Phenalenyl π-Dimer Models
Yokoyama, M; Kishi, R; Kitagawa, Y Bull. Chem. Soc. Jpn.,2024, 97, uoae126.
DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae126
Effect of oxygen vacancies and crystal phases in defective Pt/ZrO2-x on its photocatalytic activity toward hydrogen production
Yamazaki, Y.; Doshita, N.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H. Catalysis Science & Technology,2024, 14, 397–404.
DOI:https://doi.org/https://doi.org/10.1039/D3CY01470C
Nonfullerene Acceptors Bearing Spiro-Substituted Bithiophene Units in Organic Solar Cells: Tuning the Frontier Molecular Orbital Distribution to Reduce Exciton Binding Energy
Wang, K.; Jinnai, S.; Urakami, T.; Sato, H.; Higashi, M.; Tsujimura, S.; Kobori, Y.; Adachi, R.; Yamakata, A.; Ie, Y. Angew. Chem. Int. Ed.,2024, 63, e202412691.
DOI:https://doi.org/https://doi.org/10.1002/anie.202412691
A Dibenzo[g,p]chrysene‐Based Organic Semiconductor with Small Exciton Binding Energy via Molecular Aggregation
Mori, H.; Jinnai, S.; Hosoda, Y.; Muraoka, A.; Nakayama, K.; Saeki, A.; Ie, Y. Angew. Chem. Int. Ed.,2024, 63, e202409964.
DOI:https://doi.org/https://doi.org/10.1002/anie.202409964
Green-light wavelength-selective organic solar cells: module fabrication and crop evaluation towards agrivoltaics
Chatterjee, S.; Shimohara, N.; Seo, T.; Jinnai, S.; Moriyama, T.; Saida, M.; Omote, K.; Hara, K.; Iimuro, Y.; Watanabe, Y.; Ie, Y. Mater. Today Energy,2024, 45, 101673.
DOI:https://doi.org/https://doi.org/10.1016/j.mtener.2024.101673
Electrocatalyric Oxygen Reduction on Nitrogen-Doped Porous Carbon Spheres Prepared with Resorcinol-Phenolsulfonic Acid-Formaldehyde Mixed Resins
Sakamoto, K.; Kinoshita, K.; Shiraishi, Y.; Yoshida, K.; Hiramatsu, W.; Tanaka, S. Hirai, T. Chem. Lett.,2024, 53, upae215.
DOI:https://doi.org/https://doi.org/10.1093/chemle/upae215
Theoretical study on the open-shell electronic structure and electron conductivity of [18]annulene as a molecular parallel circuit model
Amamizu, N.; Nishida, M.; Sasaki, K.; Kishi, R.; Kitagawa, Y. Nanomaterials,2024, 14, 98.
DOI:https://doi.org/https://doi.org/10.3390/nano14010098
Theoretical Study on Molecular Charge Populations of One-Dimensional π-Stacked Multimers in Neutral and Electron Oxidation States
Yoshida, W; Shigeta, Y; Matsui, H; Miyamoto, H; Kishi, R; Kitagawa, Y Bull. Chem. Soc. Jpn.,2024, 97, uoae009.
DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae009
A Triply Linked Porphyrin−Norcorrole Hybrid with Singlet Diradical Character
Wang, K; Ito, S; Ren, S; Shimizu, D;Fukui, N; Kishi, R;Liu, Qiang; Osuka, A; Song, J; Shinokubo, H Angew. Chem. Int. Ed.,2024, 63, e202401233.
DOI:https://doi.org/https://doi.org/10.1002/anie.202401233
Theoretical Study on Open-Shell Electronic Structures of Through-Bond/Through-Space Hybrid Conjugated Ladder Graphs
Yoshida, W; Miyamoto, H; Shoda, J; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y Chem. Phys. Lett.,2024, 842, 141196.
DOI:https://doi.org/https://doi.org/10.1016/j.cplett.2024.141196
Homochiral and Heterochiral Self-Sorting Assemblies of Antiaromatic Ni(II) Norcorrole Dimers
Liu, S; Li, S; Ukai, S; Nozawa, R; Fukui, N; Sugimori, R; Kishi, R; Shinokubo, H Chem. Eur. J.,2024, 30, e202400292.
DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
Theoretical study on the correlation between open-shell electronic structures and third-order nonlinear optical properties in one-dimensional chains of π-radicals
Shoda, J; Yokoyama, M; Yoshida, W; Matsui, H; Sugimori, R; Kishi, R; Kitagawa, Y J. Phys. Chem. A,2024, 128, 8473–8482.
DOI:https://doi.org/https://doi.org/10.1021/acs.jpca.4c05200
Bowl-Shaped Anthracene-Fused Antiaromatic Ni(II) Norcorrole: Synthesis, Structure, Assembly with C60, and Photothermal Conversion
Wang, K; Ghosh, A; Shimizu, D; Takano, H; Ishida, M; Kishi, R; Shinokubo, H Angew. Chem. Int. Ed.,2024, , e202419289.
DOI:https://doi.org/https://doi.org/10.1002/chem.202400292
Theoretical Study on One- and Two-Photon Absorption Properties of π-Stacked Multimer Models of Phenalenyl Radicals
Yokoyama, M; Kishi, R; Kitagawa, Y Chemistry,2024, 6, 1427–1438.
DOI:https://doi.org/https://doi.org/10.3390/chemistry6060085
Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models
Miyamoto, H; Okada, K; Tada, K; Kishi, R; Kitagawa, Y Molecules,2024, 29, 5449.
DOI:https://doi.org/https://doi.org/10.3390/molecules29225449
Theoretical Study on Stacking Distance Dependence of One- and Two-Photon Absorption Properties of Phenalenyl π-Dimer Models
Yokoyama, M; Kishi, R; Kitagawa, Y Bull. Chem. Soc. Jpn.,2024, 97, uoae126.
DOI:https://doi.org/https://doi.org/10.1093/bulcsj/uoae126
2023年
Introducing proton/electron mediators enhances the catalytic ability of an iron porphyrin complex for photochemical CO2 reduction
Imai, M.; Kosugi, K.; Saga, Y.; Kondo, M.; Masaoka, S. Chem. Commun.,2023, 59,, 10741–10744.
DOI:https://doi.org/https://doi.org/10.1039/D3CC01862H
Accumulation of Re-Complex-Based Catalytic Centers in Metal–Organic Cages for Photochemical CO2 Reduction/Insertion
M. Kitada, Z. L. Goo, K. Kosugi, Y. Saga, N. Yoshinari, M. Kondo, S. Masaoka Chem. Lett.,2023, 52, 512–515.
DOI:https://doi.org/https://doi.org/10.1246/cl.230185
Iron-Complex-Based Supramolecular Framework Catalyst for Visible-Light-Driven CO2 Reduction
Kosugi, K.; Akatsuka, C.; Iwami, H.; Kondo, M.; Masaoka, S. J. Am. Chem. Soc.,2023, 145, 10451–10457.
DOI:https://doi.org/https://doi.org/10.1021/jacs.3c00783
Visible-Light-Driven Hydroacylation of Unactivated Alkenes Using Readily Available Acyl Donors
Saga, Y.; Nakayama, Y.; Watanabe, T.; Kondo, M.; Masaoka, S. Org. Lett.,2023, 25, 1136–1141.
DOI:https://doi.org/https://doi.org/10.1021/acs.orglett.2c04337
Compositional Dependence of Charge Carrier Dynamics in Multi-Cation/Halide Wide Bandgap Perovskites
Park, Y.; Nishikubo, R.; Saeki, A. J. Photopolym. Sci. Technol., 2023, 36, 359–366.
DOI: https://doi.org/10.2494/photopolymer.36.359
Exploration of Solution-Processed Bi/Sb Solar Cells by Automated Robotic Experiments Equipped with Microwave Conductivity
Nishikawa, C.; Nishikubo, R.; Ishiwari, F.; Saeki, A. JACS Au, 2023, 3, 3194–3203.
DOI: https://doi.org/10.1021/jacsau.3c00519
Bar Coating Process of Two-Dimensional Lead Iodide Perovskite Solar Cells: Effects of Vertical Orientation, Anisotropic Photoconductivity, and Conversion Time
Shimono, R.; Nishikubo, R.; Pylnev, M.; Ishiwari, F.; Wakamiya, A.; Saeki, A. ACS Appl. Energy Mater., 2023, 6, 9381–9389.
DOI: https://doi.org/10.1021/acsaem.3c01329
A chlorinated polythiophene-based polymer as a dopant-free hole transport material in perovskite solar cells
Kranthiraja, K.; Nishikubo, R.; Saeki, A. Energy Adv., 2023, 2, 1030–1035.
DOI: https://doi.org/10.1039/d3ya00113j
Machine learning of atomic force microscopy images of organic solar cells
Kobayashi, Y.; Miyake, Y.; Ishiwari, F.; Ishiwata, S.; Saeki, A. RSC Adv., 2023, 13, 15107–15113.
DOI: https://doi.org/10.1039/D3RA02492J
Unraveling complex performance-limiting factors of brominated ITIC derivative: PM6 organic solar cells by using time-resolved measurements
Li, S.; Nishikubo, R.; Wada, T.; Umeyama, T.; Imahori, H.; Saeki, A. Polym. J., 2023, 53, 463–476.
DOI: https://doi.org/10.1038/s41428-022-00704-1
Elucidation of a Photothermal Energy Conversion Mechanism in Hydrogenated Molybdenum Suboxide: Interplay of Trapped Charges and Their Dielectric Interactions
Nishikubo, R.; Kuwahara, Y.; Naito, S.; Kusu, K.; Saeki, A. J. Phys. Chem. Lett., 2023, 14, 1528–1534.
DOI: https://doi.org/10.1021/acs.jpclett.3c00080
Surface Passivation of Lead Halide Perovskite Solar Cells by a Bifacial Donor-π-Donor Molecule
Minoi, N.; Ishiwari, F.; Murotani, K.; Nishikubo, R.; Fukushima, T.; Saeki, A. ACS Appl. Mater. Interfaces, 2023, 15, 6708–6715.
DOI: https://doi.org/10.1021/acsami.2c18446
Enhancing NIR-to-visible photon upconversion in cast solid by introducing bulky substituents in rubrene and by suppressing back energy transfer
Sawa, A.; Shimada, S.; Tripathi, N.; Heck, C.; Tachibana, H.; Koyama, E.; Mizokuro, T.; Hirao, Y.; Kubo, T.; Tamai, N.; Kuzuhara, D.; Yamada, H.; Kamada, K. J. Mater. Chem. C, 2023, 11, 8502–8513.
DOI: https://doi.org/10.1039/d3tc00853c
Synthesis and structural evaluation of closed-shell folded and open-shell twisted hexabenzo[5.6.7]quinarene
Nishiuchi, T.; Uchida, K.; Kubo, T. Chem. Commun., 2023, 59, 7379–7382.
DOI: https://doi.org/10.1039/d3cc02157b
Local probe-induced structural isomerization in a one-dimensional molecular array.
Kawai, S.; Silveira, O.J.; Kurki, L.; Yuan, Z.; Nishiuchi, T.; Kodama, T.; Sun, K.; Custance, O.; Lado, J.L.; Kubo, T. Nat. Commun., 2023, 14, 7741.
DOI: https://doi.org/10.1038/s41467-023-43659-4
Synthesis and Properties of a Through-Space Interacting Diradicaloid
Kodama, T.; Hirao, Y.; Kubo, T. Precis. Chem., 2023, 1, 183–191.
DOI: https://doi.org/10.1021/prechem.3c00024
Deprotonation-Induced and Ion-Pairing-Modulated Diradical Properties of Partially Conjugated Pyrrole–Quinone Conjunction
Sugiura, S.; Kubo, T.; Haketa, Y.; Hori, Y.; Shigeta, Y.; Sakai, H.; Hasobe, T.; Maeda, H. J. Am. Chem. Soc., 2023, 145, 8122–8129.
DOI: https://doi.org/10.1021/jacs.3c01025
Closed-shell and open-shell dual nature of singlet diradical compounds
Kubo, T. Pure Appl. Chem., 2023, 95, 363–375.
DOI: https://doi.org/10.1515/pac-2023-0114
Stacked antiaromaticity in the π-congested space between the aromatic rings in the anthracene dimer
Nishiuchi, T.; Makihara, Y.; Kishi, R.; Sato, H.; Kubo, T. J. Phys. Org. Chem., 2023, 36, e4451.
DOI: https://doi.org/10.1002/poc.4451
Synthesis and Characterization of Quinone Compounds Derived from Doubly and Triply Linked Diporphyrins and Tuning of Their Absorption Properties
Yamashita, K.; Hirano, D.; Fujimaki, K.; Sugiura, K. Chem. Asian J., 2023, 29, e202302637.
DOI: https://doi.org/10.1002/chem.202302637
Photoinduced crystal melting with luminescence evolution based on conformational isomerisation
Komura, M.; Sotome, H.; Miyasaka, H.; Ogawa, T.; Tani, Y. Chem. Sci.,2023, 14, 5302–5308.
DOI: http://dx.doi.org/10.1039/d3sc00838j
Ultra-Rapid and Specific Gelation of Collagen Molecules for Transparent and Tough Gels by Transition Metal Complexation
Suezawa, T.; Sasaki, N.; Yukawa, Y.; Assan, N.; Uetake, Y.; Onuma, K.; Kamada, R.; Tomioka, D.; Sakurai, H.; Katayama, R.; Inoue, M.; Matsusaki, M. Adv. Sci.,2023, 10, 2302637.
DOI: https://doi.org/10.1002/advs.202302637
Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum
Yamauchi, Y.; Mondori, Y.; Uetake, Y.; Takeichi, Y.; Kawakita, T.; Sakurai, H.; Ogoshi, S.; Hoshimoto, Y. J. Am. Chem. Soc.,2023, 145, 16938–16947.
DOI: https://doi.org/10.1021/jacs.3c06267
Sumanene-stacked supramolecular polymers. Dynamic, solvation-directed control
Mizuno, H.; Nakazawa, H.; Harada, M.; Yakiyama, Y.; Sakurai, H.; Fukuhara, G. Chem. Commun.,2023, 59, 9595–9598.
DOI: https://doi.org/10.1039/D3CC02990E
A sumanene-containing magnetic nanoadsorbent for the removal of caesium salts from aqueous solutions
Kasprzak, A.; Matczuk, M.; Sakurai, H. Chem. Commun.,2023, 59, 9591–9594.
DOI: https://doi.org/10.1039/D3CC02657D
Dihydroxyacetone Production by Glycerol Oxidation under Moderate Condition Using Pt Loaded on La1-xBixOF Solids
Nunotani, N.; Takashima, M.; Choi, Y.-B.; Uetake, Y.; Sakurai, H.; Imanaka, N. Chem. Commun.,2023, 59, 9533–9536.
DOI: https://doi.org/10.1039/D3CC01734F
Radiation-induced synthesis of carbon-supported niobium oxide nanoparticle catalysts and investigation of heat treatment conditions to improve the oxygen reduction reaction activity
Shinyoshi, N.; Seino, S.; Uetake, Y.; Nagai, T.; Monden, R.; Ishihara, A.; Nakagawa, T. J. Ceram. Soc. Jpn.,2023, 131, 575–580.
DOI: https://doi.org/10.2109/jcersj2.23039
Fluorosumanenes as building blocks for organic crystalline dielectrics
Yakiyama, Y.; Li, M.; Sakurai, H. Pure Appl. Chem.,2023, 95, 421–430.
DOI: https://doi.org/10.1515/pac-2023-0211
Derivatization of sumanenetrione through Lewis acid-mediated Suzuki-Miyaura coupling and an unprecedented ring opening
Han, J.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Chem. Commun.,2023, 59, 4632–4635.
DOI: https://doi.org/10.1039/D3CC00394A
Application of Monoferrocenylsumanenes Derived from Sonogashira Cross-Coupling or Click Chemistry Reactions in Highly Sensitive and Selective Cesium Cation Electrochemical Sensors
Kasprzak, A.; Gajda-Walczak, A.; Kowalczyk, A.; Wagner, B.; Nowicka, A. M.; Nishimoto, M.; Koszytkowska-Stawińska, M.; Sakurai, H. J. Org. Chem.,2023, 88, 4199–4208.
DOI: https://doi.org/10.1021/acs.joc.2c02767
Synthesis of π-extended and bowl-shaped sumanene-ferrocene conjugates and their application in highly selective and sensitive cesium cations electrochemical sensors
Cyniak, J.; Kocobolska, Ł.; Bojdecka, N.; Gajda-Walczak, A.; Kowalczyk, A.; Wagner, B.; Nowicka, A.; Sakurai, H.; Kasprzak, A. Dalton Trans.,2023, 52, 3137–3147.
DOI: https://doi.org/10.1039/D3DT00084B
Size-selective Preparation of Gold Nanoparticles Stabilized on Chitosan Using the Matrix-Transfer Method
Assan, N.; Uetake, Y.; Sakurai, H. J. Nanopart. Res.,2023, 25, 50.
DOI: https://doi.org/10.1007/s11051-023-05700-x
Acceleration Effect of Bowl‐shaped Structure in Aerobic Oxidation Reaction: Synthesis of Homosumanene ortho‐Quinone and Azaacene‐Fused Homosumanenes
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Saeki, A.; Freudenberg, J.; Bunz, U. H. F.; Sakurai, H. Chem. Eur. J.,2023, 29, e202203461.
DOI: https://doi.org/10.1002/chem.202203461
Synthesis of fully substituted sumanenes at the aromatic periphery through hexabromomethylation
Nakazawa, H.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Asian J. Org. Chem.,2023, 12, e202200585.
DOI: https://doi.org/10.1002/ajoc.202200585
Pentagon-fused sumanenes on the aromatic peripheries en route to the bottom-up synthesis of fullerenes
Nakazawa, H.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Synlett,2023, 34, 374–378.
DOI: https://doi.org/10.1055/a-1992-0487
Thermodynamic differentiation of the two sides of azabuckybowl through complexation with square planar platinum(II)
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Sakurai, H. Chem. Asian J.,2023, 18, e202201103.
DOI: https://doi.org/10.1002/asia.202201103
Palladium-catalyzed synthesis of 4-sila-4H-benzo[d][1,3]oxazines by intramolecular Hiyama coupling
Lee, D.; Shintani, R. Chem. Sci.,2023, 14, 4114–4119.
DOI: https://doi.org/10.1039/D2SC06425A
A Kinetically Stabilized Nitrogen-Doped Triangulene Cation: Stable and NIR Fluorescent Diradical Cation with Triplet Ground State
Arikawa, S.; Shimizu, A.; Shiomi, D.; Sato, K.; Takui, T.; Sotome, H.; Miyasaka, H.; Murai, M.; Yamaguchi, S.; Shintani, R. Angew. Chem., Int. Ed.,2023, 62, e202302714.
DOI: https://doi.org/10.1002/anie.202302714
Zwitterionic Open-Shell Singlet Diradical with Solvent-Dependent Singlet–Triplet Energy Gap
Shimizu, A.; Hayashida, M.; Ochi, Y.; Shiomi, D.; Sato, K.; Takui, T.; Shintani, R. Asian J. Org. Chem.,2023, 12, e202300224.
DOI: https://doi.org/10.1002/ajoc.2023002244
Copper-Catalyzed Synthesis of 3-Silyl-1-silacyclopent-2-enes via Regio- and anti-Selective Addition of Silylboronates to Silicon-Containing Internal Alkynes
Kondo, R.; Moniwa, H.; Shintani, R. Org. Lett.,2023, 25, 4193–4197.
DOI: https://doi.org/10.1021/acs.orglett.3c01526
Palladium-catalyzed synthesis of benzosilacyclobutenes via position-selective C(sp3)–H arylation
Hamada, N.; Hayashi, D.; Shintani, R. Chem. Commun.,2023, 59, 9122–9125.
DOI: https://doi.org/10.1039/D3CC00442B
Copper-Catalyzed Regio- and Stereoselective Formal Hydro(borylmethylsilyl)ation of Internal Alkynes via Alkenyl-to-Alkyl 1,4-Copper Migration
Moniwa, H.; Yamanaka, M.; Shintani, R. J. Am. Chem. Soc.,2023, 145, 23470–23477.
DOI: https://doi.org/10.1021/jacs.3c06187
Palladium-Catalyzed Skeletal Rearrangement of Substituted 2-Silylaryl Triflates via 1,5-C–Pd/C–Si Bond Exchange
Hayashi, D.; Tsuda, T.; Shintani, R. Angew. Chem., Int. Ed.,2023, 62, e202313171.
DOI: https://doi.org/10.1002/anie.202313171
Open-Shell Germylene Stabilized by a Phenalenyl-Based Ligand
Kodama, T.; Uchida, K.; Nakasuji, C.; Kishi, R.; Kitagawa, Y.; Tobisu, M. Inorg. Chem., 2023, 62, 7861–7867.
DOI: https://doi.org/10.1021/acs.inorgchem.3c00583
Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
Nishino, S.; Hirano, K. Asian J. Org. Chem.,2023, 12, e202200636.
DOI: https://doi.org/10.1002/ajoc.202200636
Synthesis of α-Aminophosphonates by Umpolung-Enabled Cu-Catalyzed Regioselective Hydroamination
Nakamura, S.; Nishino, S.; Hirano, K. J. Org. Chem.,2023, 88, 1270–1281.
DOI: https://doi.org/10.1021/acs.joc.2c02632
One-Step Synthesis of Benzophosphole Derivatives from Arylalkynes by Phosphenium-Dication-Mediated Sequential C-P/C-C Bond Forming Reaction
Nishimura, K.; Xu, S.; Nishii, Y.; Hirano, K. Org. Lett.,2023, 25, 1503–1508.
DOI: https://doi.org/10.1021/acs.orglett.3c00263
Preparation and Use of (γ,γ-Dioxyallyl)boronates
Nishino, S.; Nishii, Y.; Hirano, K. Synlett,2023, 34, 2205–2209.
DOI: https://doi.org/10.1055/a-2051-1054
Rhodium-Catalyzed Isoquinoline Synthesis Using Vinyl Selenone as Oxidizing Acetylene Surrogate
Inami, A.; Nishii, Y.; Hirano, K.; Miura, M. Org. Lett.,2023, 25, 3206–3209.
DOI: https://doi.org/10.1021/acs.orglett.3c00826
Copper-mediated Trifluoromethylthiolation of Alkenyl Iodides with AgSCF3
Kojima,Y.; Hirano, K. Chem. Lett.,2023, 52, 791–793.
DOI: https://doi.org/10.1246/cl.230335
Stimuli-Responsive Properties on a Bisbenzofuropyrazine Core: Mechanochromism and Concentration-Controlled Vapochromism
Nakamura, S.; Okubo, K.; Nishii, Y.; Hirano, K.; Tohnai, N.; Miura, M. Chem. Eur. J.,2023, 29, e202302605.
DOI: https://doi.org/10.1002/chem.202302605
Rhodium-Catalyzed Direct Vinylene Annulation of 2-Aryloxazoline and Cascade Ring-Opening Using Vinyl Selenone
Kitano, J.; Nishii, Y.; Hirano, K.; Miura, M. Synlett,2023.
DOI: https://doi.org/10.1055/a-2214-5299
Synthesis, Structure, and Reactivity of a Gallylene Derivative Bearing a Phenalenyl-Based Ligand
Kodama, T.; Mukai, N.; Tobisu, M. Inorg. Chem.,2023, 62,6554–6559.
DOI:https://doi.org/10.1021/acs.inorgchem.3c00697
Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst(special issue for Japan/Netherlands Gratama Workshop)
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Synlett,2023, 35, 1296–1300.
DOI:https://10.1055/a-2191-5906
Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation
Tsuda, T.; Sheng, M.; Ishikawa, H.; Yamazoe, S.; Yamazaki, J.; Hirayama, M.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Nat Commun.,2023, 14, 5959.
DOI:https://www.nature.com/articles/s41467-023-41627-6
Robust Ruthenium Phosphide Catalyst for Hydrogenation of Sulfur-Containing Nitroarenes(front cover)
Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal.,2023, 13, 5744–5751.
DOI:https://doi.org/10.1021/acscatal.3c00128
Highlighted in Synfacts,2023, 19, 0705.
Copper nitride nanocube catalyst for the highly efficient hydroboration of alkynes(front cover)
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Org. Biomol. Chem.,2023, 21, 1404–1410.
DOI:https://doi.org/10.1039/D2OB02130G
Green Oxidation of Indoles Using Molecular Oxygen over a Copper Nitride Nanocube Catalyst.
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Eur. J. Org. Chem.,2022, 2022, e20220826.
DOI:https://doi.org/10.1002/ejoc.202200826
Single–carbon atom transfer to α,β-unsaturated amides from N-heterocyclic carbenes
Kamitani, M.; Nakayasu, B.; Yasui, K.; Fujimoto, H.; Kodama, T.; Tobisu, M. Science,2023, 379, 484–488.
DOI:https://www.science.org/doi/10.1126/science.ade5110
1,2-Diacylation of Alkynes Using Acyl Fluorides and Acylsilanes by P(III)/P(V) Catalysis
Fujimoto, H.; Yamamura, S.; Kusano, M.; Tobisu, M. Org. Lett.,2023, 25, 336–340.
DOI:https://doi.org/10.1021/acs.orglett.2c03910
Selective and High-Rate CO2 Electroreduction by Metal-Doped Covalent Triazine Frameworks: A Computational and Experimental Hybrid Approach
Kato, S.; Hashimoto, T.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Chem. Sci.,2023, 14, 613–620.
DOI:https://doi.org/10.1039/D2SC03754H
Ultra-high-rate CO2 reduction reactions to multicarbon products with a current density of 1.7 A cm-2 in neutral electrolytes
Inoue, A.; Harada, T.; Nakanishi, S.; Kamiya, K. EES. Catal.,2023, 1, 9–16.
DOI:https://doi.org/10.1039/D2EY00035K
Stacked antiaromaticity in the π-congested space between the aromatic rings in the anthracene dimer
Nishiuchi, T.; Makihara, Y.; Kishi, R.; Sato, H.; Kubo, T. J. Phys. Org. Chem.,2023, 36, e4451.
DOI:https://doi.org/10.1002/poc.4451
Finite element modeling of cycle characteristics of Li–O2 secondary batteries considering surface- and solution-route discharge reactions
Mukouyama, Y.; Hanada, S.; Goto, T.; Nakanishi, S. J. Phys. Chem. C,2023, 22, 10459–10469.
DOI: https://doi.org/10.1021/acs.jpcc.3c01940
Carbon monoxide reduction reaction to produce multicarbon products in acidic electrolytes using gas diffusion electrode loaded with copper nanoparticles
Kurihara, R.; Nagita, K.; Ohashi, K.; Mukouyama, Y.; Harada, T.; Nakanishi, S.; Kamiya, k. Adv. Mater.Interface,2023, 6, 2300731.
DOI: https://doi.org/10.1002/admi.202300731
Construction of an autocatalytic reaction cycle in neutral medium for synthesis of life-sustaining sugars
Tabata, H.; Chikatani, G.; Nishijima, H.; Harada, T.; Miyake, R.; Kato, S.; Igarashi, K.; Mukouyama, Y.; Shirai, S.; Waki, M.; Hase, Y.; Nakanishi, S. Chem. Sci.,2023, 14, 13475–13484.
DOI: https://doi.org/10.1039/D3SC03377E
Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries
Yu, W.; Yoshii, T.; Tang, A.A.R.; Pan, Z. Z.; Inoue, K.; Kotani, M.; Tanaka, H.; Scholtzová, E.; Tunega, D.; Nishina, Y.; Nishioka, K.; Nakanishi, S.; Zhou, Y.; Terasaki, O.; Nishihara, H. Adv. Sci.,2023, 16, 2300268.
DOI: https://doi.org/10.1002/advs.202300268
Angstrom-confined electrochemical synthesis of sub-unit cell non van der waals 2D metal oxides
Ji, D.; Lee, Y.; Nishina, Y.; Kamiya, K.; Rahman Daiyan, R.; Chu, D.; Wen, X.; Yoshimura, M.; Kumar, P.; Andreeva, D.V.; Kostya Sovoselov, K.; Lee, G.H.; Joshi, R.; Foller, T. Adv. Mater.,2023, 30, 2301506.
DOI: https://doi.org/10.1002/adma.202301506
2022年
Visible Light-Driven CO2 Reduction with a Ru Polypyridyl Complex Bearing an N-Heterocyclic Carbene Moiety
Watanabe, T.; Saga, Y.; Kosugi, K.; Iwami, H.; Kondo, M.; Masaoka, S. Chem. Commun.,2022, 58, 5229–5232.
DOI:https://doi.org/https://doi.org/10.1039/D2CC00657J
Electrochemical Polymerization of a Carbazole-Tethered Cobalt Phthalocyanine for Electrocatalytic Water Oxidation
Li, S.; Iwami, H.; Kondo, M.; Masaoka, S. ChemNanoMat,2022, 8, e202200028.
DOI:https://doi.org/https://doi.org/10.1002/cnma.202200028
Photochemical hydrogen production based on HCOOH/CO2 cycle promoted by pentanuclear cobalt complex
Akai, T.; Kondo, M.; Saga, Y.; Masaoka, S. Chem. Commun.,2022, 58, 3755–3758.
DOI:https://doi.org/https://doi.org/10.1039/D1CC06445B
Copper(II) tetrakis(pentafluorophenyl)porphyrin: Highly Active Copper-based Molecular Catalyst for Electrochemical CO2 Reduction
Kosugi, K.; Kashima, H.; Kondo, M.; Masaoka, S. Chem. Commun.,,2022, 58,, 2975–2978.
DOI:https://doi.org/https://doi.org/10.1039/D1CC05880K
Synthesis and Electrocatalytic CO2 Reduction Activity of an Iron Porphyrin Complex Bearing a Hydroquinone Moiety
Kosugi, K.; Imai, M.; Kondo, M.; Masaoka, S. Chem. Lett.,2022, 51, 224–226.
DOI:https://doi.org/https://doi.org/10.1246/cl.210734
Fabrication of a Function-Integrated Water Oxidation Catalyst by Electrochemical Polymerization of Ruthenium Complexes
Iwami, H.; Kondo, M.; Masaoka, S. ChemElectroChem,2022, 9, 52–58.
DOI:https://doi.org/https://doi.org/10.1002/celc.202101363
Unprecedented Wavelength Dependence of an Antimony Chalcohalide Photovoltaic Device
Nishikubo, R.; Li, S.; Saeki, A. Adv. Funct. Mater., 2022, 32, 2201577.
DOI: https://doi.org/10.1002/adfm.202201577
Improved Predictions of Organic Photovoltaic Performance through Machine Learning Models Empowered by Artificially Generated Failure Data
Miyake, Y.; Kranthiraja, K.; Ishiwari, F.; Saeki, A. Chem. Mater., 2022, 34, 6912–6920.
DOI: https://doi.org/10.1021/acs.chemmater.2c01294
Machine Learning-Assisted Polymer Design for Improving the Performance of Non-Fullerene Organic Solar Cells
Kranthiraja, K.; Saeki, A. ACS Appl. Mater. Interfaces, 2022, 14, 28936–28944.
DOI: https://doi.org/10.1021/acsami.2c06077
Exploration of charge transport materials to improve the radiation tolerance of lead halide perovskite solar cells
Murakami, Y.; Nishikubo, R.; Ishiwari, F.; Okamoto, K.; Kozawa, T.; Saeki, A. Mater. Adv., 2022, 3, 4861–4869.
DOI: https://doi.org/10.1039/d2ma00385f
Multivariate Analysis of Mixed Ternary and Quaternary A-Site Organic Cations in Tin Iodide Perovskite Solar Cells
Nakanishi, E.; Nishikubo, R.; Ishiwari, F.; Nakamura, T.; Wakamiya, A.; Saeki, A. ACS Materials Lett., 2022, 4, 1124–1131.
DOI: https://doi.org/10.1021/acsmaterialslett.2c00229
Synthesis, properties and chemical modification of a persistent triisopropylsilylethynyl substituted tri(9-anthryl)methyl radical
Nishiuchi, T.; Ishii, D.; Aibara, S.; Sato, H.; Kubo, T. Chem. Commun., 2022, 58, 3306–3309.
DOI: https://doi.org/10.1039/d2cc00548d
Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Bull. Chem. Soc. Jpn, 2022, 95, 1591–1599.
DOI: https://doi.org/10.1246/bcsj.20220257
Synergistic Enhancement of Hydrogen-Bonding and Charge-Transfer Interactions in a Crystal of an Anthranol–Acridine Dyad Comprised of a Hydrogen-Bonded Chain Aggregate
Hirao, Y.; Inobe, H.; Hosoi, K.; Kubo, T. J. Phys. Chem. C, 2022, 126, 10940–10946.
DOI: https://doi.org/10.1021/acs.jpcc.2c03584
Tunable Solid-State Thermochromism: Alkyl Chain Length-Dependent Conformational Isomerization of Bianthrones
Hirao, Y.; Hamamoto, Y.; Kubo, T. Chem. Asian J., 2022, 17, e202200121.
DOI: https://doi.org/10.1002/asia.202200121
Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Chem. Eur. J., 2022, 28, e202200286.
DOI: https://doi.org/10.1002/chem.202200286
Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T. J. Am. Chem. Soc., 2022, 144, 7479–7488.
DOI: https://doi.org/10.1021/jacs.2c02318
Molecular and Spin Structures of a Through-Space Conjugated Triradical System
Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T. Angew. Chem. Int. Ed., 2022, 61, e202200688.
DOI: https://doi.org/10.1002/anie.202200688
A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T. Org. Biomol. Chem., 2022, 20, 1671–1679.
DOI: https://doi.org/10.1039/d1ob02358f
Mechanism and Kinetics of Fluorescence Quenching of Fluorene-Endcapped Butatriene: A Microspectroscopic Study of the Discrete State Constructed in Microcrystals
Hirao, Y.; Ihara, K.; Ishibashi, Y.; Tiu, E. G.; Asahi, T.; Kubo, T. J. Phys. Chem. C, 2022, 126, 1196–1203.
DOI: https://doi.org/10.1021/acs.jpcc.1c09163
20π Antiaromatic Isophlorins without Metallation or Core Modification
Sugimura, H.; Nakajima, K.; Yamashita, K.; Ogawa, T. Asian J. Org. Chem., 2022, 46, e202200747.
DOI: https://doi.org/10.1002/ejoc.202200747
N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li-O2 Batteries
Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater., 2022, 5, 4404–4412.
DOI: https://doi.org/10.1021/acsaem.1c03999
Order-of-Magnitude Enhancement in Photocurrent Generation of Synechocystis Sp. PCC 6803 by Outer Membrane Deprivation
Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S. Nat. Commun., 2022, 13, 3067.
DOI: https://doi.org/10.1038/s41467-022-30764-z
Structural Symmetry and Spin Multiplicity of Sumanene Derivative Radical Molecules
Baba, Y.; Sakurai, H.; Muraoka, A. J. Comput. Chem. Jpn.,2022, 21, 55–57.
DOI: https://doi.org/10.2477/jccj.2022-0033
Intramolecular hydroamination catalysed by gold nanoparticles deposited on fibrillated cellulose
Uetake, Y.; Suwattananuruk, B.; Sakurai, H. Sci. Rep.,2022, 12, 20602.
DOI: https://doi.org/10.1038/s41598-022-24955-3
Synthesis of Sumanene-fused Acenes
Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H. Asian J. Org. Chem.,2022, 11, e202200471.
DOI: https://doi.org/10.1002/ajoc.202200471
Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P. J. Phys. Chem. A,2022, 126, 5283–5293.
DOI: https://doi.org/10.1021/acs.jpca.2c02906
Turning Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H. Chem. Commun.,2022, 58, 8950–8953.
DOI: https://doi.org/10.1039/D2CC02766F
Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T. RADIOISOTOPES,2022, 71, 171–177.
DOI: https://doi.org/10.3769/radioisotopes.71.171
Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
Yamauchi, Y.; Hoshimoto, Y.; Kawakita, T.; Kinoshita, T.; Uetake, Y.; Sakurai, H.; Ogoshi, S. J. Am. Chem. Soc.,2022, 144, 8818–8826.
DOI: https://doi.org/10.1021/jacs.2c02870
Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
Li, M.; Wu, J.-Y.; Sambe, K.; Yakiyama, Y.; Akutagawa, T.; Kajitani, T.; Fukushima, T.; Matsuda, K.; Sakurai, H. Mater. Chem. Front.,2022, 6, 1752–1758.
DOI: https://doi.org/10.1039/D2QM00134A
Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H. J. Org. Chem.,2022, 87, 2508–2519.
DOI: https://doi.org/10.1021/acs.joc.1c02416
Tuning the sumanene receptor structure towards the development of potentiometric sensors
Kasprzak, A.; Tobolska, A.; Sakurai, H.; Wróblewski, W. Dalton Trans.,2022, 51, 468–472.
DOI: https://doi.org/10.1039/d1dt03467g
Dianion and Dication of Tetracyclopentatetraphenylene as Decoupled Annulene-within-an-Annulene Models
Miyoshi, H.; Sugiura, R.; Kishi, R.; Spisak, S. N.; Wei, Z.; Muranaka, A.; Uchiyama, M.; Kobayashi, N.; Chatterjee, S.; Ie, Y.; Hisaki, I.; Petrukhina, M. A.; Nishinaga, T.; Nakano, M.; Tobe, Y. Angew. Chem. Int. Ed.,2022, 61, e202115316.
DOI:https://doi.org/10.1002/anie.202115316
Medium Diradical Character, Small Hole and Electron Reorganization Energies and Ambipolar Transistors in Difluorenoheteroles
Mori, S.; Moles Quintero, S.; Tabaka, N.; Kishi, R.; González Núñez, R.; Harbuzaru, A.; Ponce Ortiz, R.; Marín‐Beloqui, J.; Suzuki, S.; Kitamura, C.; Gómez‐García, C. J.; Dai, Y.; Negri, F.; Nakano, M.; Kato, S.; Casado, J. Angew. Chem. Int. Ed.,2022, 61, e202206680.
DOI:https://doi.org/10.1002/anie.202206680
Characterization of resonance structures in aromatic rings of benzene and its heavier-element analogues
Sugahara, T.; Hashizume, D.; Tokitoh, N.; Matsui, H.; Kishi, R.; Nakano, M.; Sasamori, T. Phys. Chem. Chem. Phys.,2022, 24, 22557–22561.
DOI:https://doi.org/10.1039/D2CP03068C
Theoretical study on the structures, electronic properties, and aromaticity of thia[4]circulenes
Hashimoto, S.; Kishi, R.; Tahara, K. New J. Chem.,2022, 46, 22703–22714.
DOI:https://doi.org/10.1039/d2nj04359a
Synthesis of Cage-Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation
Tsutsui, Y.; Tanaka, D.; Manabe, Y.; Ikinaga, Y.; Yano, K.; Fukase, K.; Konishi, A.; Yasuda, M. New J. Chem.,2022, 46, e202202284.
DOI:https://doi.org/10.1039/D2NJ04359A
Lewis Acid-Catalyzed Diastereoselective C–C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,β-Diaryl-β-haloesters
Wang, F.; Nishimoto, Y.; Yasuda, M. Angew. Chem. Int. Ed.,2022, 61, e202204462.
DOI:https://doi.org/10.1002/anie.202204462
anti-Selective Borylstannylation of Alkynes with (o-Phenylenediaminato)borylstannanes by a Radical Mechanism
Suzuki, K.; Sugihara, N.; Nishimoto, Y.; Yasuda, M. Angew. Chem. Int. Ed.,2022, 61, e202201883.
DOI:https://doi.org/10.1002/anie.202201883
Indium-Catalyzed Formal Carbon−Halogen Bond Insertion: Synthesis of α‐Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters
Wang, F.; Nishimoto, Y.; Yasuda, M. Org. Lett.,2022, 24, 1706–1710.
DOI:https://doi.org/10.1021/acs.orglett.2c00343
Bis-periazulene (Cyclohepta[def]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives
Horii, K.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Konishi, A.; Yasuda, M. J. Am. Chem. Soc.,2022, 144, 3370–3375.
DOI:https://doi.org/10.1021/jacs.2c00476
Carboboration-Driven Generation of a Silylium Ion for Vinylic C–F Bond Functionalization by B(C6F5)3 Catalysis
Yata, T.; Nishimoto, Y.; Yasuda, M. Chem. Eur. J.,2022, 28, e202103852.
DOI:https://doi.org/10.1002/chem.202103852
Revisiting Glycosylations Using Glycosyl Fluoride by BF3∙Et2O: Activation of Disarmed Glycosyl Fluorides with High Catalytic Turnover
Yata, T.; Nishimoto, Y.; Yasuda, M. Org. Lett.,2022, 24, 6–10.
DOI:https://doi.org/10.1021/acs.orglett.1c03233
Synthesis and Characterization of Dinaphtho[2,1-a:2,3-f]pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer
Horii, K.; Nogata, A.; Mizuno, Y.; Iwasa, H.; Suzuki, M.; Nakayama, K.; Konishi, A.; Yasuda, M. Chem. Lett.,2022, 51, 325–329.
DOI:https://doi.org/10.1246/cl.210809
Effects of the rigid and sterically bulky structure of non-fused nonfullerene acceptors on transient photon-to-current dynamics
Jinnai, S.; Murayama, K.; Nagai, K.; Mineshita, M.; Kato, K.; Muraoka, A.; Yamakata, A.; Saeki, A.; Kobori, Y.; Ie, Y. J. Mater. Chem. A,2022, 10, 20035–20047.
DOI:https://doi.org/10.1039/D2TA02604J
A Tin Oxide-Coated Copper Foam Hybridized with a Gas Diffusion Electrode for Efficient CO2 Reduction to Formate with a Current Density Exceeding 1 A cm−2
Liu, T.; Ohashi, K.; Nagita, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Small,2022, 18, 2205323.
DOI:https://doi.org/10.1002/smll.202205323
Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation
Kusama, S.; Kojima, S.; Kimura, K.; Shimakawa, G.; Miyake, C.; Tanaka, K.; Okumura, Y.; Nakanishi, S. Nat. Commun.,2022, 13, 3067.
DOI:https://doi.org/10.1038/s41467-022-30764-z
N,N-Dimethylethanesulfonamide as an Electrolyte Solvent Stable for the Positive Electrode Reaction of Aprotic Li–O2 Batteries
Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater.,2022, 5, 4404–4412.
DOI:https://doi.org/10.1021/acsaem.1c03999
NADPH production in dark stages is critical for cyanobacterial photocurrent generation: A study using mutants deficient in oxidative pentose phosphate pathway
Hatano, J.; Kusama, S.; Tanaka, K.; Kohara, A.; Miyake, C.; Nakanishi, S.; Shimakawa, G. Photosynth. Res.,2022, 153, 113–120.
DOI:https://doi.org/10.1007/s11120-022-00903-0
Positive Feedback Mechanism to Increase the Charging Voltage of Li‒O2 Batteries
Hase, Y.; Uyama, T.; Nishioka, K.; Seki, J.; Morimoto, K.; Ogihara, N.; Mukouyama, Y.; Nakanishi, S. J. Am. Chem. Soc.,2022, 144, 1296–1305.
DOI:https://doi.org/10.1021/jacs.1c10986
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration
Shintani, R.; Hama, D.; Hamada, N.; Miwa, T. Tetrahedron Lett.,2022, 104, 154301.
DOI:https://doi.org/10.1016/j.tetlet.2022.154031
Synthesis of Poly(arylenevinylene)s by Rhodium-Catalyzed Stitching Polymerization/Alkene Isomerization
Togawa, S.; Shintani, R. J. Am. Chem. Soc.,2022, 144, 18545–.
DOI:https://doi.org/10.1021/jacs.2c07835
Tunable Solid-State Thermochromism: Alkyl Chain Length-Dependent Conformational Isomerization of Bianthrones
Hirao, Y.; Hamamoto, Y.; Kubo, T. Chem. Asian J.,2022, 17, e202200121.
DOI:https://doi.org/10.1039/D1OB02358F
A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
Hirao, Y.; Eto, M.; Teraoka, M.; Kubo, T. Org. Biomol. Chem.,2022, 20, 1671–1679.
DOI:https://doi.org/10.1039/D2SC06003E
anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters
Nishino, S.; Nishii, Y.; Hirano, K. Chem. Sci.,2022, 13, 14387–14394.
DOI:https://doi.org/10.1039/D2SC06003E
Palladium-catalysed C-H arylation of benzophospholes with aryl halides
Xu, S.; Nishimura, K.; Saito, K.; Hirano, K.; Miura, M.; Chem. Sci.,2022, 13, 10950–10960.
DOI:https://doi.org/10.1039/D2SC04311D
Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes
Kojima, Y.; Nishii, Y.; Hirano, K. Org. Lett.,2022, 24, 7450–7454.
DOI:https://doi.org/10.1021/acs.orglett.2c03024
Pd-catalyzed, Ag-assisted C2-H alkenylation of benzophospholes
Tokura, Y.; Xu, S.; Kojima, Y.; Miura, M.; Hirano, K. Chem. Commun.,2022, 58, 12208–12212.
DOI:https://doi.org/10.1039/D2CC04942B
Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters
Nishino, S.; Hirano, K. Asian J. Org. Chem.,2022, ##, ####–####.
DOI:https://doi.org/10.1002/ajoc.202200636
Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzene
Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Bull. Chem. Soc. Jpn.,2022, 95, 1591–1599.
DOI:https://doi.org/10.1246/bcsj.20220257
Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen
Weber, I.; Tsuge, M.; Sundararajan, P.; Baba, M.; Sakurai, H.; Lee, Y.-P. J. Phys. Chem. A,2022, 126, 5283–5293.
DOI:https://doi.org/10.1021/acs.jpca.2c02906
Synthesis of Sumanene-fused Acenes
Nakazawa, H.; Ohya, A.; Morimoto, Y.; Uetake, Y.; Ikuma, N.; Okada, K.; Nakano, M.; Yakiyama, Y.; Sakurai, H. Asian J. Org. Chem.,2022, ##, ####–####.
DOI:https://doi.org/10.1002/ajoc.202200471
Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-anthryl)benzenes
Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Bull. Chem. Soc. Jpn.2022, ##, ####–####.
DOI:https://www.journal.csj.jp/doi/abs/10.1246/bcsj.20220257
Synthesis of the C70 Fragment Buckybowl, Homosumanene and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone
Nishimoto, M.; Uetake, Y.; Yakiyama, Y.; Ishiwari, F.; Saeki, A.; Sakurai, H. J. Org. Chem.,2022, 87, 2508–2519.
DOI:https://doi.org/10.1021/acs.joc.1c02416
Radiation Induced Synthesis of Tin-based Nanoparticles and Investigation of the Generating Mechanism
Shinyoshi, N.; Seino, S.; Uegaki, N.; Fujieda, S.; Uetake, Y.; Nakagawa, T. RADIOISOTOPES,2022, 71, 171–177.
DOI:https://doi.org/10.3769/radioisotopes.71.171
Turning the Dielectric Response by Co-crystallisation of Sumanene and Its Fluorinated Derivative
Li, M.; Chen, X.; Yakiyama, Y.; Wu, J.; Akutagawa, T.; Sakurai, H. Chem. Commun.,2022, 58, 8950–8953.
DOI:https://doi.org/10.1039/D2CC02766F
Nickel-catalyzed 1,4-aryl rearrangement of aryl N-benzylimidates via C–O and C–H bond cleavage (cover picture)
Ogawa, S.; Tobisu, M. Chem. Commun.,2022, 58, 7909–7912.
DOI:https://doi.org/10.1039/D2CC02355E
Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate
Shimazumi, R.; Tanimoto, R.; Kodama, T.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 11033–11043.
DOI:https://doi.org/10.1021/jacs.2c04527
Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes
Yamauchi, Y.: Hoshimoto, Y.: Kawakita, T.: Kinoshita, T.: Uetake, Y.: Sakurai, H.: Ogoshi, S. J. Am. Chem. Soc.,2022, 144, 8818–8826.
DOI:https://doi.org/10.1021/jacs.2c02870
Tuning the sumanene receptor structure towards the development of potentiometric sensors
Kasprzak, A.: Tobolska, A.: Sakurai, H.: Wróblewski, W. Dalton Trans.,2022, 51, 468–472.
DOI:https://doi.org/10.1021/acs.joc.1c02416
Dielectric Response of 1,1-Difluorosumanene Caused by an In-Plane Motion
Li, M.; JianYun Wu,J,Y.; Sambe, K.; Yakiyama, Y. ; Akutagawa, T.; Kajitani, T.; Fukushima, T. ; Matsudah K.; Sakurai, H. Mater. Chem. Front.,2022, 6, 1752–1758.
DOI:https://doi.org/10.1039/D2QM00134A
Synthesis of π-Extended Thiele’s and Chichibabin’s Hydrocarbons and Effect of the π-Congestion on Conformations and Electronic States
Nishiuchi, T.; Aibara, S.; Sato, H.; Kubo, T. J. Am. Chem. Soc.,2022, 144, 7479–7488.
DOI:https://doi.org/10.1021/jacs.2c02318
Non-Stabilized Vinyl Anion Equivalents from Styrenes by N-Heterocyclic Carbene Catalysis and Its Use in Catalytic Nucleophilic Aromatic Substitution
Ito, S.; Fujimoto, H.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 6714–6718.
DOI:https://doi.org/10.1021/jacs.2c02579
Nickel-Catalyzed Skeletal Transformation of Tropone Derivatives via C–C Bond Activation: Catalyst-Controlled Access to Diverse Ring Systems
Kodama, T.; Saito, K.; Tobisu, M. Chem. Sci.,2022, 13, 4922–2929.
DOI:https://doi.org/10.1039/D2SC01394K
Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs
Nishiuchi, T.; Aibara, S.; Yamakado, T.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Chem. Eur. J.,2022, 28, e202200286.
DOI:https://doi.org/10.1002/chem.202200286
Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M. Ajavakom, A. Sens. Bio-Sens. Res.,2022, 35, 100470.
DOI:https://doi.org/10.1016/j.sbsr.2021.100470
Palladium-Catalyzed Silylacylation of Allenes Using Acylsilanes
Inagaki, T.; Sakurai, S.; Yamanaka, M. Tobisu, M. Angew. Chem. Ind. Ed.,2022, 61, e202202387.
DOI:https://doi.org/10.1002/anie.202202387
Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst(front cover)
Sakoda, K.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. JACS Au,2022, 2, 665–672.
DOI:https://doi.org/10.1021/jacsau.1c00535
Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus(front cover)
Ishikawa, H.; Yamaguchi, S.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. JACS Au,2022, 2, 419–427.
DOI:https://doi.org/10.1021/jacsau.1c00461
Ratiometric and colorimetric detection of Cu2+ via the oxidation of benzodihydroquinoline derivatives and related synthetic methodology
Paisuwan, W.; Ajavakom, V.; Sukwattanasinitt, M.; Tobisu, M.; Ajavakom, A. Sens. Bio-Sens. Res.,2022, 35, 100470.
DOI:https://doi.org/10.1016/j.sbsr.2021.100470
Overlooked Factors Required for Electrolyte Solvents in Li–O₂ Batteries: Capabilities of Quenching 1O₂ and Forming Highly-Decomposable Li₂O₂
Nishioka, K.; Tanaka, M.; Fujimoto, H.; Amaya, T.; Ogoshi, S.; Tobisu, M.; Nakanishi, S. Angew. Chem. Ind. Ed.,2022, 61, e202112769.
DOI:https://doi.org/10.1002/anie.202112769
Molecular and Spin Structures of a Through-Space Conjugated Triradical System
Kodama, T.; Aoba, M.; Hirao, Y.; Rivero, S. M.; Casado, J.; Kubo, T. Angew. Chem. Ind. Ed.,2022, 61, e202200688.
DOI:https://doi.org/10.1002/anie.202200688
Synthesis, Properties and Chemical Modification of a Persistent Triisopropylsilylethynyl Substituted Tri(9-anthryl)methyl Radical
Nishiuchi, T.; Ishii, D; Aibara, S.; Sato, H.; Kubo, T. Chem. Commun.,2022, 58, 3306–3309.
DOI:https://doi.org/10.1039/D2CC00548D
A strong hydride donating, acid stable and reusable 1,4-dihydropyridine for selective aldimine and aldehyde reductions
Hirao, Y.; Eto, H.; Teraoka, M.; Kubo, T. Org. Biomol. Chem.,2022, 20, 1671–1679.
DOI:https://doi.org/10.1039/D1OB02358F
Palladium-Catalyzed Siloxycyclopropanation of Alkenes Using Acylsilanes
Sakurai, S.; Inagaki, T.; Kodama, T.; Yamanaka, M. Tobisu, M. J. Am. Chem. Soc.,2022, 144, 1099–1105.
DOI:https://pubs.acs.org/doi/10.1021/jacs.1c11497
Nickel-Catalyzed Addition of C–C Bonds of Amides to Strained Alkenes: The 1,2-Carboaminocarbonylation Reaction
Ito, Y.; Nakatani, S.; Shiraki, R.; Kodama, T.; Tobisu, M. J. Am. Chem. Soc.,2022, 144, 662–666.
DOI:https://pubs.acs.org/doi/10.1021/jacs.1c09265
Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy
Li, X.; Shigemitsu, H.; Goto, T.; Kida, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y. Nanoscale Adv.,2022, 4, 2992–2995.
DOI:https://doi.org/10.1039/D2NA00318J
Enhanced Photocatalytic Activity of Porphyrin Nanodisks Prepared by Exfoliation of Metalloporphyrin-Based Covalent Organic Frameworks
Li, X.; Nomura, K.; Guedes, A.; Goto, T.; Sekino, T.; Fujitsuka, M.; Osakada, Y. ACS Omega,2022, 7, 7172–7278.
DOI:https://doi.org/10.1021/acsomega.1c06838
Single-molecule Fluorescence Kinetic Sandwich Assay Using a DNA Sequencer
Kawai, K.; Fujitsuka, M. Chem. Lett.,2022, 51, 139–141.
DOI:https://doi.org/10.1246/cl.210726
Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking
Fan, S.; Xu, J.; Osakada, Y.; Hashimoto, K.; Takayama, K.; Natsume, A.; Hirano, M.; Maruyama, A.; Fujitsuka, M.; Kawai, K.; Kawai, K. Chem,2022, 8, 3109–3119.
DOI:https://doi.org/10.1016/j.chempr.2022.07.025
Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA
Fan, S.; Takada, T.; Maruyama, A.; Fujitsuka, M.; Kawai, K. Bull. Chem. Soc. Jpn.,2022, 95, 1697–1702.
DOI:https://doi.org/10.1246/bcsj.20220220
Amphiphilic Rhodamine Nano-assembly as a Type I Supramolecular Photosensitizer for Photodynamic Therapy
Shigemitsu, H.; Sato, K.; Hagio, S.; Tani, Y.; Mori, T.; Ohkubo, K.; Osakada, Y.; Fujitsuka, M.; Kida, T. ACS Appl. Nano Mater.,2022, 5, 14954–14960.
DOI:https://doi.org/10.1021/acsanm.2c03192
Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly
Shigemitsu, H.; Ohkubo, K.; Sato, K.; Bunno, A.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. JACS Au,2022, 2, 1472–1478.
DOI:https://doi.org/10.1021/jacsau.2c00243
2021年
Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting
Cai, X.; Mao, L.; Fujitsuka, M.; Majima, T.; Kasani, S.; Wu, N.; Zhang, J. Nano Res.,2021, 15, 438–445.
DOI:https://doi.org/10.1007/s12274-021-3498-5
Defect-mediated electron transfer in photocatalysts
Xue, J.; Fujitsuka, M.; Majima, T. Chem. Commun.,2021, 57, 3532–2542.
DOI:https://doi.org/10.1039/D1CC00204J
Control of Triplet Blinking Using Cyclooctatetraene to Access the Dynamics of Biomolecules at the Single-Molecule Level
Xu, J.; Fan, S.; Xu, L.; Maruyama, A.; Fujitsuka, M.; Kawai, K. Angew. Chem. Int. Ed.,2021, 60, 12941–12948.
DOI:https://doi.org/10.1002/anie.202101606
Electronic and Structural Properties of 2,3-Naphthalimide in Open-Shell Configurations Investigated by Pulse Radiolytic and Theoretical Approaches
Zhuang, B.; Tojo, S.; Fujitsuka, M. ChemistrySelect,2021, 6, 3331–3338.
DOI:https://doi.org/10.1002/slct.202100417
One-Pot Synthesis of Long Rutile TiO2 Nanorods and Their Photocatalytic Activity for O2 Evolution: Comparison with Near-Spherical Nanoparticles
Yamazaki, S.; Kutoh, M.; Yamazaki, Y.; Yamamoto, N.; Fujitsuka, M. ACS Omega,2021, 6, 31557–31565.
DOI:https://doi.org/10.1021/acsomega.1c04003
Stacked Thiazole Orange Dyes in DNA Capable of Switching Emissive Behavior in Response to Structural Transitions
Takada, T.; Nishida, K.; Honda, Y.; Nakano, A.; Nakamura, M.; Fan, S.; Kawai, K.; Fujitsuka, M.; Yamana, K. ChemBioChem,2021, 22, 2729–2735.
DOI:https://doi.org/10.1002/cbic.202100309
A cyanine dye based supramolecular photosensitizer enabling visible-light-driven organic reaction in water
Shigemitsu, H.; Tamemoto, T.; Ohkubo, K.; Mori, T.; Osakada, Y.; Fujitsuka, M.; Kida, T. Chem. Commun.,2021, 57, 11217–11220.
DOI:https://doi.org/10.1039/D1CC04685C
Femtosecond time-resolved diffuse reflectance study on facet engineered charge‐carrier dynamics in Ag3PO4 for antibiotics photodegradation
He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T. Appl. Catal., B,2021, 281, 119479.
DOI:https://doi.org/10.1016/j.apcatb.2020.119479
COF-based photocatalyst for energy and environment applications
Li, X.; Kawai, K.; Fujitsuka, M.; Osakada, Y. Surf. Interfaces,2021, 25, 101249.
DOI:https://doi.org/10.1016/j.surfin.2021.101249
Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking
Kawai, K.; Fujitsuka, M.; Maruyama, A. Acc. Chem. Res.,2021, 54, 1001–1010.
DOI:https://doi.org/10.1021/acs.accounts.0c007549
Theoretical Study on Singlet Fission in Aromatic Diaza s-Indacene Dimers
Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M. J. Phys. Chem. A,2021, 125, 3257–3267.
DOI:https://doi.org/10.1021/acs.jpca.0c11598
Characterization of Benzo[a]naphtho[2,3-f]pentalene: Interrelation between Open-shell and Antiaromatic Characters Governed by Mode of the Quinoidal Subunit and Molecular Symmetry
Nagami, T.; Sugimori, R.; Sakai, R.; Okada, K.; Nakano, M. Chem. Asian. J.,2021, 16, 1553–1561.
DOI:https://doi.org/10.1002/asia.202100398
Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models
Tonami, T.; Sugimori, R.; Sakai, R.; Tokuyama, K.; Miyamoto, H.; Nakano, M. Phys. Chem. Chem. Phys.,2021, 23, 11624–11634.
DOI:https://doi.org/10.1039/D1CP00880C
Theoretical Study on Singlet Fission Dynamics in Slip-Stack-Like Pentacene Ring-Shaped Aggregate Models
Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M. J. Phys. Chem. A,2021, 125, 5586–5600.
DOI:https://doi.org/10.1021/acs.jpca.1c03934
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
Miyamoto, H.; Okada, K.; Tokuyama, K.; Nakano, M. Molecules,2021, 26, 6129.
DOI:https://doi.org/10.3390/molecules26206129
Long Carbon–Carbon Bonding beyond 2 Å in Tris(9-fluorenylidene)methane
Kubo, T.; Suga, Y.; Hashizume, D.; Suzuki, H.; Miyamoto, T.; Okamoto, H.; Kishi, R.; Nakano, M. J. Am. Chem. Soc.,2021, 143, 14360–14366.
DOI:https://doi.org/10.1021/jacs.1c07431
A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ring-Opening of Benzofuran-fused s-Indacenes and Dicyclopenta[b,g]naphthalenes
Barker, J. E.; Price, T. W.; Karas, L. J.; Kishi, R.; MacMillan, S. N.; Zakharov, L. N.; Gómez‐García, C. J.; Wu, J. I.; Nakano, M.; Haley, M. M. Angew. Chem. Int. Ed.,2021, 60, 22385–22392.
DOI:https://doi.org/10.1002/anie.202107855
Insertion of Diazo Esters into C−F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF3 Catalysis with C−F Bond Cleavage and Re-formation (cover picture)
Wang, F.; Nishimoto, Y.; Yasuda, M. J. Am. Chem. Soc.,2021, 143, 20616–20621.
DOI:https://doi.org/10.1021/jacs.1c10517
Strong Metal–Support Interaction in Pd/Ca2AlMnO5+δ: Catalytic NO Reduction over Mn-Doped CaO Shell
Hosokawa, S.; Oshino, Y.; Tanabe, T.; Koga, H.; Beppu, K.; Asakura, H.; Teramura, K.; Motohashi, T.; Okumura, M.; Tanaka, T. ACS Catal.,2021, 11, 7996–8003.
DOI:https://doi.org/10.1021/acscatal.1c01559
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming
Era, I.; Kitagawa, Y.; Yasuda, N.; Kamimura, T.; Amamizu, N.; Sato, H.; Cho, K.; Okumura, M.; Nakano, M. Molecules,2021, 26, 6129.
DOI:https://doi.org/10.3390/molecules26206129
Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction (Cover)
Niwa, T.; Uetake, Y.; Isoda, M.; Takimoto, T.; Nakaoka, M.; Hashizume, D.; Sakurai, H.; Hosoya, T. Nature. Catal.,2021, 4, 6593–6597.
DOI:https://doi.org/10.1038/s41929-021-00719-6
1,2,3-Tri(9-anthryl)benzene: Photophysical Properties and Solid State Intermolecular Interactions of Radially Arranged, Congested Aromatic π-Planes (cover picture)
Nishiuchi, T.; Sotome, H.; Shimizu, K.; Miyasaka, H.; Kubo, T. Chem. Eur. J.,2022, 28, e202104245.
DOI:https://doi.org/10.1002/chem.202104245
Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium.
Kasama, K.; Kanomata, K.; Hinami, Y.; Mizuno, K.; Uetake, Y.; Amaya, T.; Sako, M.; Takizawa, S.; Sasai, H.; Akai, S. RSC Adv.,2021, 11, 35342–35350.
DOI:https://doi.org/10.1039/D1RA07723F
Synthesis of Benzoisoselenazolones via Rh(III)-catalyzed Direct Annulative Selenation Using Elemental Selenium.
Xu-Xu, Q.-F.; Nishii, Y.; Uetake, Y.; Sakurai, H.; Miura, M. Chem. Eur. J.,2021, 27, 17952–17959.
DOI:https://doi.org/10.1002/chem.202103485
Pyridine Ring Modification of Indane-1,3-dione Dimers for Control of their Crystal Structure.
Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H. Asian J. Org. Chem.,2021, 10, 2418.
DOI:https://doi.org/10.1002/ajoc.202100376
Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence.
Nishiuchi, T.; Sotome, H.; Fukuuchi, R.; Kamada, K.; Miyasaka, H.; Kubo, T. Aggregate,2021, 2, e126.
DOI:https://doi.org/10.1002/agt2.126
Synthesis and Characterization of 1-Hydroxy-4,5-arene-Fused Tropylium Derivatives
Kodama, T.; Kawashima, Y.; Uchida, K.; Deng, Z.; Tobisu, M. J. Org. Chem.,2021, 86, 13800–13807.
DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds
Sheng, M.; Fujita, S.; Yamaguchi, S.; Yamasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. JACS Au,2021, 1, 501–507.
DOI:https://doi.org/10.1021/jacsau.1c00125
A Nickel Phosphide Nanoalloy Catalyst for the C-3 Alkylation of Oxindoles with Alcohols
Sheng, M.; Fujita, S,; Imagawa, K.; Yamaguchi, S.; Yamasaki, J.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Sci. Rep.,2021, 11, 10673.
DOI:https://doi.org/10.1038/s41598-021-89561-18
A Copper Nitride Catalyst for the Efficient Hydroxylation of Aryl Halides under Ligand-free Conditions (Cover)
Xu, H.; Yamaguchi, S.; Mitsudome, T.; Mizugaki, T. Org. Biomol. Chem.,2021, 19, 6593–6597.
DOI:https://doi.org/10.1039/D1OB00768H
Efficient D-Xylose Hydrogenation to D-Xylitol over a Hydrotalcite-Supported Nickel Phosphide Nanoparticle Catalyst (Cover)
Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Eur. J. Inorg. Chem.,2021, 2021, 3327–3331.
DOI:https://doi.org/10.1002/ejic.202100432
Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines (Cover)
Sheng, M.; Yamaguchi, S.; Nakata, A.; Yamazoe, S.; Nakajima, K.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. ACS Sustainable Chemistry & Engineering,2021, 9, 11238–11246.
DOI:https://doi.org/10.1021/acssuschemeng.1c03667
Synthesis and Catalytic Activity of Atrane-type Hard and Soft Lewis Superacids with a Silyl, Germyl, or Stannyl Cationic Center
Tanaka, D.; Konishi, A.; Yasuda, M. Chem. Asian J.,2021, 16, 3118–3123.
DOI:https://doi.org/10.1002/asia.202100873
Synthesis and pyrolysis of fullerenol-stabilized Pt nanocolloids for unique approach to Pt-doped carbon
Cabello, M. K. E.; Uetake, Y.; Yao, Y.; Kuwabata, S.; Sakurai, H. Chem. Asian J.,2021, 16, 2280–2285.
DOI:https://doi.org/10.1002/asia.202100495
Ruthenium-Catalyzed Isomerization of ortho-Silylanilines to Their Para Isomers
Ishiga, W.; Ohta, M.; Kodama, T.; Tobisu, M. Org. Lett.,2021, 23, 6714–6718.
DOI:https://doi.org/10.1021/acs.orglett.1c022800
Nonfullerene acceptors for P3HT-based organic solar cells
Chatterjee, S.; Jinnai, S.; Ie, Y. J. Mater. Chem. A,2021, 9, 18857–18886.
DOI:https://doi.org/10.1039/D1TA03219D
Photoredox-Catalyzed C−F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position
Sugihara, N.; Suzuki, K.; Nishimoto, Y.; Yasuda, M. J. Am. Chem. Soc.,2021, 143, 9308–9313.
DOI:https://doi.org/10.1021/jacs.1c03760
Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
Kranthiraja, K,; Saeki, A. Adv. Funct. Mater.,2021, 31, 92011168.
DOI:https://doi.org/10.1002/adfm.202011168
Indium-catalyzed C–F Bond Transformation through Oxymetalation/β-fluorine Elimination to Access Fluorinated Isocoumarin
Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M. Chem. Eur. J.,2021, 27, 8288–8294.
DOI:https://doi.org/10.1002/chem.202100672
Homologation of Alkyl Acetates, Alkyl Ethers, Acetals and Ketals by Formal Insertion of Diazo Compounds into a Carbon-Carbon Bond
Wang, F.; Yi, J.; Nishimoto, Y.; Yasuda, M. Synthesis,2021, 53, 4004–4019.
DOI:https://doi.org/10.1055/a-1523-1551
Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution
Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S. Inorg. Chem.,2021, 60, 12634–12643.
DOI:https://doi.org/10.1021/acs.inorgchem.1c01279
A Quasi-stable Molybdenum Sub-oxide with Abundant Oxygen Vacancies that Promotes CO₂ Hydrogenation to Methanol
Kuwahara, Y.; Mihogi, T.; Hamahara, K.; Kusu, K.; Kobayashi, H.; Yamashita, H. CHem. Sci.,2021, 12, 9902–9915.
DOI:https://doi.org/10.1039/D1SC02550C
Plasmon-induced Catalytic CO₂ Hydrogenation by a Nano-sheet Pt/HxMoO3−y Hybrid with Abundant Surface Oxygen Vacancies
Ge, H.; Kuwahara, Y.; Kusu, K.; Yamashita, H. J. Mater. Chem. A,2021, 9, 13898–13907.
DOI:https://doi.org/10.1039/D1TA02277F
Modification of Ti-doped Hematite Photoanode with Quasi-molecular Cocatalyst: A Comparison of Improvement Mechanism Between Non-noble and Noble Metals
Wang, R.; Kuwahara, Y.; Mori, K.; Qian, X.; Zhao, Y.; Yamashita, H. ChemSusChem,2021, 14, 2180–2187.
DOI:https://doi.org/10.1002/cssc.202100451
Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion
Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc.,2021, 143, 12590–12599.
DOI:https://doi.org/10.1021/jacs.1c04622
Modulation of Self-Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO₂ Reduction
Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka. S.; Matsuda. R.; Kondo. M.; Masaoka, S. Small,2021, 17, 2006150.
DOI:https://doi.org/10.1002/smll.202006150
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO₂ hydrogenation
Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H. Nature Commun.,2021, 12, 3884.
DOI:https://doi.org/10.1038/s41467-021-24228-z
Pyridine Ring Modification of Indane-1,3-dione Dimers for Controlof their Crystal Structure
Yakiyama, Y.; Fujinaka, T.; Nishimura, M.; Seki, R.; Sakurai, H. Asian J. Org. Chem.,2021, 10, 2690–2696.
DOI:https://doi.org/10.1002/ajoc.202100275
Two-step Conformational Control of a Dibenzo Diazacyclooctane Derivative by Stepwise Protonation
Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A. Asian J. Org. Chem.,2021, 10, 1377–1381.
DOI:https://doi.org/10.1002/ajoc.202100154
The Dawn of Sumanene Chemistry: My Personal History with π-Figuration
Sakurai, H. Bull. Chem. Soc. Jpn.,2021, 94, 1579–1587.
DOI:https://doi.org/10.1246/bcsj.20210046
Indium‐catalyzed C–F Bond Transformation through Oxymetalationβ‐fluorine Elimination to Access Fluorinated Isocoumarins
Yata, T.; Nishimoto, Y.; Chiba, K.; Yasuda, M. Chem. - Eur. J.,2021, 27, 8288–8294.
DOI:https://doi.org/10.1002/chem.202100672
Quick and Easy Method for Drastic Improvement of the Electrochemical CO₂ Reduction Activity an Iron Porphyrin Complex
Kosugi, K.; Kondo, M.; Masaoka, S. Angew. Chem. Int. Ed.,2021, 60, 22070–22074.
DOI:http://dx.doi.org/10.1002/anie.202110190
Fabrication of Function-Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes
Iwami, H.; Kondo, M.; Masaoka, S. ChemElectroChem,2021, 9, e202101363.
DOI:https://doi.org/10.1002/celc.202101363
Design of molecular water oxidation catalysts with earth-abundant metal ions
Kondo, M.; Tatewaki, H.; Masaoka, S. Chem. Soc. Rev.,2021, 50, 6790–6831.
DOI:https://doi.org/10.1039/D0CS01442G
Support-boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki,T.; Mitsudome, T. ACS Sustainable chemistry & Engineering,2021, 9, 6347–6354.
DOI:https://doi.org/10.1021/acssuschemeng.1c00447
Supported Cobalt Phosphide Nanoalloy Catalysts for Hydrogenation of Furfurals
Ichikawa, H.; Sheng, M.; Nakata, A.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Yamaguchi, S.; Mizuguchi, T.; Mitsudome, T. Synfacts,2021, 17, 0432.
DOI:https://doi.org/10.1055/s-0040-1706732
Deoxygenation of Sulfoxides on Nano-Nickel Phosphide/Titania Catalyst
Fujita, S.; Yamaguchi, S.; Yamazoe, S.; Yamasaki, S.; Mizugaki, T.; Mitsudome, T. Synfacts,2021, 17, 0193.
DOI:https://doi.org/10.1055/s-0040-1706651
Synthesis of 4,5-Benzotropone π Complexes of Iron, Rhodium, and Iridium and Their Potential Use in Catalytic Borrowing-Hydrogen Reactions
Kodama, T.; Kawashima, Y.; Deng, Z.; Tobisu, M. Inorg. Chem.,2021, 60, 4332–4336.
DOI:https://doi.org/10.1021/acs.inorgchem.0c03587
Late-stage Derivatization of Buflavine by Nickel-catalyzed Direct Substitution of a Methoxy Group via C–O Bond Activation
Shimazumi, R.; Morita, K.; Yoshida, T.; Yasui, K.; Tobisu, M. Synthesis,2021, 53, 3037–3044. in press. (Special issue on Bond Activation in Honor of Prof. Shinji Murai)
DOI:https://doi.org/10.1055/a-1467-2494
Frontiers in water oxidation: Design, activity, and mechanism of molecular catalysts with earth-abundant metal ions
Kondo, M.; Tatewaki, H.; Masaoka, S. Chem. Soc. Rev., in press.
Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction
Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S. Small,2021, 17, 2006150.
DOI:https://doi.org/10.1002/smll.202006150
Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide
Nakao, S.; Nishimoto, Y.; Yasuda M. Chem. Lett.2021, 350, 538–541.
DOI:https://doi.org/10.1246/cl.200894
N-Heterocyclic Carbene-Catalyzed Truce–Smiles Rearrangement of N-Arylacrylamides via the Cleavage of Unactivated C(aryl)–N Bonds
Yasui, K.; Kamitani, M.; Fujimoto, H.; Tobisu, M. Org. Lett.2021, 23, 1572–1576.
DOI:https://pubs.acs.org/doi/10.1021/acs.orglett.0c04281
Volcano-Type Correlation between Particle Size and Catalytic Activity on Hydrodechlorination Catalyzed by AuPd Nanoalloy
Uetake, Y.; Mouri, S.; Haesuwannakij, S.; Okumura, K.; Sakurai H. Nanoscale Adv.2021, 3, 1496–1501.
DOI:https://doi.org/10.1039/D0NA00951B
Experiment-Oriented Machine Learning of Polymer:Non-Fullerene Organic Solar Cells
Kranthiraja, K.; Saeki, A. Adv. Funct. Mater.2021, 31, 2011168.
DOI:https://doi.org/10.1002/adfm.202011168
H2-Free Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
Yamaguchi, S.; Kondo, H.; Uesugi, K.; Sakoda, K.; Jitsukawa, K.; Mitsudome, T.; Mizugaki, T. ChemCatChem2021, 13, 1135–1139.
DOI:https://doi.org/10.1002/cctc.202001866
Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
Fujita, S.; Yamaguchi, S.; Yanasaki, J.; Nakajima, K.; Yamazoe, S.; Mizugaki, T.; Mitsudome, T. Chem. Eur. J.2021, 27, 4439–4446.
DOI:https://doi.org/10.1002/chem.202005037
Air-stable and reusable nickel phosphide nanoalloy catalyst for the highly selective hydrogenation of D-glucose to D-sorbitol
Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. Green Chem.2021, 23, 2010–2016.
DOI:https://doi.org/10.1039/D0GC03301D
Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation
Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S. Angew. Chem. Int. Ed.2021, 60, 5965–5969.
DOI:https://doi.org/10.1002/anie.202015174
Pd-Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO2 to Formate (表Cover)
Yang, G.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. J. Phys. Chem. C 2021, 125, 3961–3971.
DOI:https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10962
(o‐Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors
Suzuki, K. Nishimoto, Y.; Yasuda, M. Chem. –Eur. J.2021, 27, 3968–3973.
DOI:https://doi.org/10.1002/chem.202004692
2020年
Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification
Chutimasakul, T.; Uetake, Y.; Tantirungrotechai, J.; Asoh, T.; Uyama, H.; Sakurai H. ACS Omega2020, 5, 33206–33213.
DOI:https://pubs.acs.org/doi/abs/10.1021/acsomega.0c04894
Nickel-Catalyzed Decarbonylation of Acylsilanes
Ito, Y.; Nakatani, S.; Kodama, T.; Tobisu, M. J. Org. Chem.2020, 85, 7588–7594.
DOI:http://dx.doi.org/10.1021/acs.joc.0c00772