

Personal Copy

Category

Synthesis of Materials and Unnatural Products

Key words

azaaromatics

oxidative heteroannulation

BINAM

organic Iuminescence diode Y. TAKEDA,* M. OKAZAKI, S. MINAKATA* (OSAKA UNIVERSITY, JAPAN)

Oxidative Skeletal Rearrangement of 1,1'-Binaphthalene-2,2'-diamines (BINAMs) *via* C-C Bond Cleavage and Nitrogen Migration: A Versatile Synthesis of U-Shaped Azaacenes *Chem. Commun.* **2014**, *50*, 10291–10294.

Rearrange for a 'U'-seful Change

Entry	R ¹	R ²	R ³	Yield (%)
1	Ph	Н	Н	78
2	OMe	Н	Н	96
3	Br	Н	Н	37
4	Н	Br	Н	50
5	Н	Н	OMe	62
6	Н		Sunne	23

Proposed mechanism:

Significance: π-Conjugated azaacenes are promising electron-transporting materials for organic electronics, because the greater electronegativity of nitrogen compared to carbon increases their electron affinity and their oxidative stability. While a single report of the oxidative dimerization of 1-aminonaphthalenes is known, this procedure provides a mixture of U-shaped dibenzo[a,j]-phenazine and S-shaped dibenzo[a,h]phenazine (Y. Kosugi, K. Itoho, H. Okazaki, T. Yanai *J. Org. Chem.* **1995**, *60*, 5690). Takeda and co-workers describe the selective synthesis of the U-shaped isomer through I⁺-mediated rearrangement of 1,1'-binaphthalene-2,2'-diamines (BINAMs).

SYNFACTS Contributors: Timothy M. Swager, Julia A. Kalow Synfacts 2014, 10(10), 1036 Published online: 17.09.2014 **DOI:** 10.1055/s-0034-1379138; **Reg-No.:** S09514SF

with electron-rich BINAMs; strongly electron-with-drawing groups such as esters are not tolerated. The bromo-substituted azaacenes, while produced in modest yield (entries 3 and 4), may be further elaborated by cross-coupling reactions. A cross-over experiment provided no cross-products, confirming that the rearrangement proceeds intramolecularly. A preliminary mechanism is presented in the paper. The substituted dibenzo[a,j]-phenazines emit fluorescence ranging from blue to yellow and display redox potentials compatible with commonly employed organic luminescence diode (OLED) materials.